Suppr超能文献

银修饰的硫化锡单层作为用于CFN分解的潜在传感材料:密度泛函理论研究

Ag Modified SnS Monolayer as a Potential Sensing Material for CFN Decompositions: A Density Functional Theory Study.

作者信息

Tan Xiangyu, Na Zhimin, Zhuo Ran, Zhou Fangrong, Wang Dibo, Zhu Longchang, Wu Peng

机构信息

Power Science Research Institute of Yunnan Power Grid Co., Ltd., Kunming 650214, China.

Qujing Power Supply Bureau of Yunnan Power Grid Co., Ltd., Qujing 655099, China.

出版信息

ACS Omega. 2024 May 22;9(22):23523-23530. doi: 10.1021/acsomega.4c00687. eCollection 2024 Jun 4.

Abstract

As the field of 2D materials rapidly evolves, substances such as graphene, metal dichalcogenides, MXenes, and MBenes have garnered extensive attention from scholars in the gas sensing domain due to their unique and superior properties. Based on first-principles calculations, this work explored the adsorption characteristics of both intrinsic and silver (Ag) doped tin disulfide (SnS) toward the decomposition components of the insulating medium CFN (namely, CF, CF, and COF), encompassing the adsorption energy, charge transfer, density of state (DOS), band structure, and adsorption stability. The results indicated that Ag-doped SnS exhibited an effective and stable adsorption for CF and COF, whereas its adsorption for CF was comparatively weaker. Additionally, the potential for Ag-SnS in detecting CF was highlighted, inferred from the contributions of the band gap variations. This research provides theoretical guidance for the application of Ag-SnS as a sensing material in assessing the operational status of gas-insulated equipment.

摘要

随着二维材料领域的迅速发展,石墨烯、金属二硫属化物、MXenes和MBenes等物质因其独特且优异的性能而在气体传感领域受到学者们的广泛关注。基于第一性原理计算,本工作探究了本征及银(Ag)掺杂的二硫化锡(SnS)对绝缘介质CFN的分解成分(即CF、CF和COF)的吸附特性,包括吸附能、电荷转移、态密度(DOS)、能带结构和吸附稳定性。结果表明,Ag掺杂的SnS对CF和COF表现出有效且稳定的吸附,而其对CF的吸附相对较弱。此外,从带隙变化的贡献推断,突出了Ag-SnS在检测CF方面的潜力。本研究为Ag-SnS作为传感材料在评估气体绝缘设备运行状态中的应用提供了理论指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba20/11154719/8a21b4f055d4/ao4c00687_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验