用于卵巢癌筛查的整合细胞外 microRNA 分析。

Integrated extracellular microRNA profiling for ovarian cancer screening.

机构信息

Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 05-01-01 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.

Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.

出版信息

Nat Commun. 2018 Oct 17;9(1):4319. doi: 10.1038/s41467-018-06434-4.

Abstract

A major obstacle to improving prognoses in ovarian cancer is the lack of effective screening methods for early detection. Circulating microRNAs (miRNAs) have been recognized as promising biomarkers that could lead to clinical applications. Here, to develop an optimal detection method, we use microarrays to obtain comprehensive miRNA profiles from 4046 serum samples, including 428 patients with ovarian tumors. A diagnostic model based on expression levels of ten miRNAs is constructed in the discovery set. Validation in an independent cohort reveals that the model is very accurate (sensitivity, 0.99; specificity, 1.00), and the diagnostic accuracy is maintained even in early-stage ovarian cancers. Furthermore, we construct two additional models, each using 9-10 serum miRNAs, aimed at discriminating ovarian cancers from the other types of solid tumors or benign ovarian tumors. Our findings provide robust evidence that the serum miRNA profile represents a promising diagnostic biomarker for ovarian cancer.

摘要

提高卵巢癌预后的主要障碍是缺乏有效的早期检测筛选方法。循环 microRNAs(miRNAs)已被认为是有前途的生物标志物,可能会应用于临床。在这里,为了开发最佳的检测方法,我们使用微阵列从 4046 份血清样本中获得了全面的 miRNA 图谱,其中包括 428 名卵巢肿瘤患者。在发现集中构建了基于十个 miRNA 表达水平的诊断模型。在独立队列中的验证表明,该模型非常准确(灵敏度为 0.99;特异性为 1.00),即使在早期卵巢癌中也能保持诊断准确性。此外,我们构建了另外两个模型,每个模型使用 9-10 种血清 miRNAs,旨在将卵巢癌与其他类型的实体瘤或良性卵巢瘤区分开来。我们的研究结果提供了确凿的证据,表明血清 miRNA 图谱是一种有前途的卵巢癌诊断生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62c9/6192980/e03c64c66c0e/41467_2018_6434_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索