Suppr超能文献

脊髓损伤后的骨脆弱性:远端股骨和近端胫骨的刚度和骨矿物质减少与时间的关系。

Bone fragility after spinal cord injury: reductions in stiffness and bone mineral at the distal femur and proximal tibia as a function of time.

机构信息

Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, T2N 1N4, USA.

McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, USA.

出版信息

Osteoporos Int. 2018 Dec;29(12):2703-2715. doi: 10.1007/s00198-018-4733-0. Epub 2018 Oct 17.

Abstract

UNLABELLED

Computed tomography and finite element modeling were used to assess bone structure at the knee as a function of time after spinal cord injury. Analyzed regions experienced degradation in stiffness, mineral density, and content. Changes were well described as an exponential decay over time, reaching a steady state 3.5 years after injury.

INTRODUCTION

Spinal cord injury (SCI) is associated with bone fragility and an increased risk of fracture around the knee. The purpose of this study was to investigate bone stiffness and mineral content at the distal femur and proximal tibia, using finite element (FE) and computed tomography (CT) measures. A cross-sectional design was used to compare differences between non-ambulatory individuals with SCI as a function of time after injury (0-50 years).

METHODS

CT scans of the knee were obtained from 101 individuals who experienced an SCI 30 days to 50 years prior to participation. Subject-specific FE models were used to estimate stiffness under axial compression and torsional loading, and CT data was analyzed to assess volumetric bone mineral density (vBMD) and bone mineral content (BMC) for integral, cortical, and trabecular compartments of the epiphyseal, metaphyseal, and diaphyseal regions of the distal femur and proximal tibia.

RESULTS

Bone degradation was well described as an exponential decay over time (R = 0.33-0.83), reaching steady-state levels within 3.6 years of SCI. Individuals at a steady state had 40 to 85% lower FE-derived bone stiffness and robust decreases in CT mineral measures, compared to individuals who were recently injured (t ≤ 47 days). Temporal and spatial patterns of bone loss were similar between the distal femur and proximal tibia.

CONCLUSIONS

After SCI, individuals experienced rapid and profound reductions in bone stiffness and bone mineral at the knee. FE models predicted similar reductions to axial and torsional stiffness, suggesting that both failure modes may be clinically relevant. Importantly, CT-derived measures of bone mineral alone underpredicted the impacts of SCI, compared to FE-derived measures of stiffness.

TRIAL REGISTRATION

ClinicalTrials.gov (NCT01225055, NCT02325414).

摘要

目的

使用计算机断层扫描和有限元建模来评估脊髓损伤后膝关节的骨结构随时间的变化。分析区域的刚度、矿物质密度和含量均出现下降。这些变化可以很好地描述为随时间的指数衰减,在损伤后 3.5 年达到稳定状态。

简介

脊髓损伤(SCI)与膝关节周围的骨脆弱和骨折风险增加有关。本研究的目的是使用有限元(FE)和计算机断层扫描(CT)测量来研究股骨远端和胫骨近端的骨刚度和矿物质含量。采用横截面设计比较了非卧床 SCI 患者随损伤后时间(0-50 年)的差异。

方法

从 101 名 SCI 患者中获得膝关节 CT 扫描,这些患者在参与研究前 30 天至 50 年内发生了 SCI。使用个体特定的 FE 模型来估计轴向压缩和扭转加载下的刚度,并对 CT 数据进行分析,以评估股骨远端和胫骨近端骨骺、骨干和干骺端区域的整体、皮质和小梁容积骨矿物质密度(vBMD)和骨矿物质含量(BMC)。

结果

骨降解可以很好地描述为随时间的指数衰减(R=0.33-0.83),在 SCI 后 3.6 年内达到稳定水平。与近期受伤的患者(t≤47 天)相比,处于稳定状态的患者的 FE 衍生骨刚度降低 40%至 85%,CT 矿物质测量值也大幅下降。股骨远端和胫骨近端的骨丢失的时空模式相似。

结论

SCI 后,膝关节的骨刚度和骨矿物质迅速而显著地降低。FE 模型预测轴向和扭转刚度相似的降低,表明这两种失效模式可能具有临床相关性。重要的是,与 FE 衍生的刚度测量值相比,CT 衍生的骨矿物质测量值单独预测 SCI 的影响不足。

试验注册

ClinicalTrials.gov(NCT01225055,NCT02325414)。

相似文献

2
Bone mineral and stiffness loss at the distal femur and proximal tibia in acute spinal cord injury.
Osteoporos Int. 2014 Mar;25(3):1005-15. doi: 10.1007/s00198-013-2557-5. Epub 2013 Nov 5.
4
Exploring the determinants of fracture risk among individuals with spinal cord injury.
Osteoporos Int. 2014 Jan;25(1):177-85. doi: 10.1007/s00198-013-2419-1. Epub 2013 Jun 28.
5
Trabecular Bone Score at the Distal Femur and Proximal Tibia in Individuals With Spinal Cord Injury.
J Clin Densitom. 2019 Apr-Jun;22(2):249-256. doi: 10.1016/j.jocd.2018.04.002. Epub 2018 Apr 24.
6
Bone mineral loss at the proximal femur in acute spinal cord injury.
Osteoporos Int. 2013 Sep;24(9):2461-9. doi: 10.1007/s00198-013-2323-8. Epub 2013 Mar 7.
7
Regional cortical and trabecular bone loss after spinal cord injury.
J Rehabil Res Dev. 2012;49(9):1365-76. doi: 10.1682/jrrd.2011.12.0245.
9
Reduction in Torsional Stiffness and Strength at the Proximal Tibia as a Function of Time Since Spinal Cord Injury.
J Bone Miner Res. 2015 Aug;30(8):1422-30. doi: 10.1002/jbmr.2474. Epub 2015 May 21.

引用本文的文献

1
Bone mineral density after spinal cord injury: assessment of hip and knee measurements.
J Bone Miner Metab. 2025 Sep 17. doi: 10.1007/s00774-025-01643-6.
6
High prevalence of low bone mineral density but normal trabecular bone score in Norwegian elite Para athletes.
Front Sports Act Living. 2023 Nov 15;5:1246828. doi: 10.3389/fspor.2023.1246828. eCollection 2023.
8
Mechanical Biomarkers in Bone Using Image-Based Finite Element Analysis.
Curr Osteoporos Rep. 2023 Jun;21(3):266-277. doi: 10.1007/s11914-023-00784-9. Epub 2023 Apr 20.
9
Bone Tissue and the Nervous System: What Do They Have in Common?
Cells. 2022 Dec 22;12(1):51. doi: 10.3390/cells12010051.
10
Drug discovery in spinal cord injury-induced osteoporosis: a text mining-based study.
Ann Transl Med. 2022 Jul;10(13):733. doi: 10.21037/atm-21-6900.

本文引用的文献

2
Practical considerations for obtaining high quality quantitative computed tomography data of the skeletal system.
Bone. 2018 May;110:58-65. doi: 10.1016/j.bone.2018.01.013. Epub 2018 Jan 12.
3
Analysis of the evolution of cortical and trabecular bone compartments in the proximal femur after spinal cord injury by 3D-DXA.
Osteoporos Int. 2018 Jan;29(1):201-209. doi: 10.1007/s00198-017-4268-9. Epub 2017 Oct 17.
4
Bone Imaging and Fracture Risk after Spinal Cord Injury.
Curr Osteoporos Rep. 2015 Oct;13(5):310-7. doi: 10.1007/s11914-015-0288-6.
5
Reduction in Torsional Stiffness and Strength at the Proximal Tibia as a Function of Time Since Spinal Cord Injury.
J Bone Miner Res. 2015 Aug;30(8):1422-30. doi: 10.1002/jbmr.2474. Epub 2015 May 21.
7
Reduction in proximal femoral strength in patients with acute spinal cord injury.
J Bone Miner Res. 2014 Sep;29(9):2074-9. doi: 10.1002/jbmr.2227.
8
The mechanical consequence of actual bone loss and simulated bone recovery in acute spinal cord injury.
Bone. 2014 Mar;60:141-7. doi: 10.1016/j.bone.2013.12.012. Epub 2013 Dec 17.
9
Bone mineral and stiffness loss at the distal femur and proximal tibia in acute spinal cord injury.
Osteoporos Int. 2014 Mar;25(3):1005-15. doi: 10.1007/s00198-013-2557-5. Epub 2013 Nov 5.
10
Incidence of skeletal fractures after traumatic spinal cord injury: a 10-year follow-up study.
Clin Rehabil. 2014 Apr;28(4):361-9. doi: 10.1177/0269215513501905. Epub 2013 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验