Suppr超能文献

包含交互时间的双矩阵博弈改变了进化结果:所有者-入侵者博弈。

Bimatrix games that include interaction times alter the evolutionary outcome: The Owner-Intruder game.

机构信息

Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada.

Department of Mathematics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic.

出版信息

J Theor Biol. 2019 Jan 7;460:262-273. doi: 10.1016/j.jtbi.2018.10.033. Epub 2018 Oct 15.

Abstract

Classic bimatrix games, that are based on pair-wise interactions between two opponents in two different roles, do not consider the effect that interaction duration has on payoffs. However, interactions between different strategies often take different amounts of time. In this article, we further develop a new approach to an old idea that opportunity costs lost while engaged in an interaction affect individual fitness. We consider two scenarios: (i) individuals pair instantaneously so that there are no searchers, and (ii) searching for a partner takes positive time and populations consist of a mixture of singles and pairs. We describe pair dynamics and calculate fitnesses of each strategy for a two-strategy bimatrix game that includes interaction times. Assuming that distribution of pairs (and singles) evolves on a faster time scale than evolutionary dynamics described by the replicator equation, we analyze the Nash equilibria (NE) of the time-constrained game. This general approach is then applied to the Owner-Intruder bimatrix game where the two strategies are Hawk and Dove in both roles. While the classic Owner-Intruder game has at most one interior NE and it is unstable with respect to replicator dynamics, differences in pair duration change this prediction in that up to four interior NE may exist with their stability depending on whether pairing is instantaneous or not. The classic game has either one (all Hawk) or two ((Hawk,Dove) and (Dove,Hawk)) stable boundary NE. When interaction times are included, other combinations of stable boundary NE are possible. For example, (Dove,Dove), (Dove,Hawk), or (Hawk,Dove) can be the unique (stable) NE if interaction time between two Doves is short compared to some other interactions involving Doves.

摘要

经典的双矩阵博弈是基于两个对手在两个不同角色中的两两交互,不考虑交互持续时间对收益的影响。然而,不同策略之间的相互作用往往需要不同的时间。在本文中,我们进一步发展了一种新方法,即个体在相互作用中失去的机会成本会影响个体适应性。我们考虑两种情况:(i)个体瞬间配对,因此没有搜索者;(ii)寻找伴侣需要花费正时间,并且种群由单身者和伴侣者的混合物组成。我们描述了双矩阵博弈中配对动态,并计算了包括交互时间的每个策略的适应度。假设对的分布(和单身者)的演变速度快于由复制者方程描述的进化动态,我们分析了时间受限博弈的纳什均衡(NE)。然后,我们将这种通用方法应用于所有者-入侵者双矩阵博弈,其中两个策略在两个角色中都是鹰派和鸽派。虽然经典的所有者-入侵者博弈最多只有一个内部 NE,并且对于复制者动态是不稳定的,但配对持续时间的差异改变了这一预测,即多达四个内部 NE 可能存在,其稳定性取决于配对是否是瞬间的。经典游戏只有一个(全部是鹰派)或两个((鹰派,鸽派)和(鸽派,鹰派))稳定的边界 NE。当包括交互时间时,可能存在其他稳定的边界 NE 组合。例如,如果两只鸽派之间的相互作用时间相对于其他涉及鸽派的相互作用时间较短,则(鸽派,鸽派),(鸽派,鹰派)或(鹰派,鸽派)可以是唯一(稳定)的 NE。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验