Suppr超能文献

一种基于社会人口学和临床因素的老年患者多重用药风险预测模型。

A polypharmacy risk prediction model for elderly patients based on sociodemographic and clinical factors.

作者信息

Santos-Pérez María Isabel, Fierro Inmaculada, Salgueiro-Vázquez M Esther, Gallardo-Lavado María Del Mar, Sáinz-Gil María, Martín-Arias Luis H

出版信息

Int J Clin Pharmacol Ther. 2018 Dec;56(12):577-584. doi: 10.5414/CP203238.

Abstract

OBJECTIVE

Elderly people take increasing amounts of medication. The aim of our study was to determine the effects of different sociodemographic and clinical factors on polypharmacy and to develop a risk prediction model in outpatients aged 65 years and older.

MATERIALS AND METHODS

Cross-sectional, observational, descriptive study of outpatients aged 65 years and older scheduled for a specialist visit. Data on sociodemographic (age, sex, place of residence, and institutionalization) as well as on clinical variables (number of prescribing physicians and number of diagnoses) were collected. Polypharmacy was defined as the uninterrupted use of more than 5 medications within the last 3 months. To determine the risk factors for polypharmacy among these patients, a multivariate logistic regression model was developed and subsequently validated using bootstrap resampling techniques. The model was assessed for its discrimination accuracy using the area under the curve (ROC AUC).

RESULTS

A total of 225 outpatients were included for development of the model. Polypharmacy was found in 46.7% of patients. The determinants that best predicted polypharmacy included: age, institutionalization, number of prescribing physicians, and number of diagnoses. The ROC AUC was 0.85.

CONCLUSION: The predictive model developed in this study, which consists of 4 readily obtainable variables, may be a useful tool for identifying and monitoring elderly patients at risk for polypharmacy.
.

摘要

目的

老年人服用的药物数量日益增加。我们研究的目的是确定不同社会人口统计学和临床因素对多重用药的影响,并为65岁及以上的门诊患者开发一种风险预测模型。

材料与方法

对计划进行专科就诊的65岁及以上门诊患者进行横断面、观察性、描述性研究。收集社会人口统计学数据(年龄、性别、居住地点和机构化情况)以及临床变量数据(开处方医生数量和诊断数量)。多重用药定义为在过去3个月内不间断使用超过5种药物。为了确定这些患者中多重用药的风险因素,开发了一个多变量逻辑回归模型,随后使用自助重采样技术进行验证。使用曲线下面积(ROC AUC)评估该模型的辨别准确性。

结果

共有225名门诊患者纳入模型开发。46.7%的患者存在多重用药情况。最能预测多重用药的决定因素包括:年龄、机构化情况、开处方医生数量和诊断数量。ROC AUC为0.85。

结论

本研究中开发的预测模型由4个易于获得的变量组成,可能是识别和监测有多重用药风险的老年患者的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验