Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China.
Section of Cardiovascular Diseases and Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
JACC Clin Electrophysiol. 2018 Oct;4(10):1347-1358. doi: 10.1016/j.jacep.2018.06.012. Epub 2018 Aug 29.
OBJECTIVES: This study sought to develop a novel targeted delivery therapy to ablate the major atrial ganglionated plexi (GP) using magnetic nanoparticles carrying a CaCl payload. BACKGROUND: Prior studies indicated the role of hyperactivity of the cardiac autonomic nervous system in the genesis of atrial fibrillation. METHODS: Twenty-eight male mongrel dogs underwent a bilateral thoracotomy. CaCl-encapsulated magnetic nanoparticles (Ca-MNP) included magnetite in a sphere of biocompatible, biodegradable poly(lactic-co-glycolic acid). A custom external electromagnet focusing the magnetic field gradient (2,600 G) on the epicardial surface of the targeted GP was used to pull Ca-MNP into and release CaCl within the GP. The ventricular rate slowing response to high frequency stimulation (20 Hz, 0.1 ms) of the GP was used to assess the GP function. RESULTS: The minimal effective concentration of CaCl to inhibit the GP function was 0.5 mmol/l. Three weeks after CaCl (0.5 mmol/l, n = 18 GP) or saline (n = 18 GP) microinjection into GP, the increased GP function, neural activity, and atrial fibrillation inducibility, as well as shortened effective refractory period in response to 6 h of rapid atrial pacing (1,200 beats/min) were suppressed by CaCl microinjection. After intracoronary infusion of Ca-MNP, the external electromagnet pulled Ca-MNP to the targeted GP and suppressed the GP function (n = 6 GP) within 15 min. CONCLUSIONS: Ca-MNP can be magnetically targeted to suppress GP function by calcium-mediated neurotoxicity. This novel approach may be used to treat arrhythmias related to hyperactivity of the cardiac autonomic nervous system, such as early stage of atrial fibrillation, with minimal myocardial injury.
目的:本研究旨在开发一种新型靶向递药疗法,使用携带氯化钙有效载荷的磁性纳米颗粒消融主要心房神经节丛(GP)。
背景:先前的研究表明心脏自主神经系统的过度活跃在心房颤动的发生中起作用。
方法:28 只雄性杂种犬接受双侧开胸手术。氯化钙包被的磁性纳米颗粒(Ca-MNP)包含球体中的磁铁矿,球体为生物相容性、可生物降解的聚(乳酸-共-羟基乙酸)。定制的外部电磁体聚焦磁场梯度(2600 G)于靶向 GP 的心外膜表面,将 Ca-MNP 拉入并在 GP 内释放氯化钙。高频刺激(20 Hz,0.1 ms)GP 的心室率减慢反应用于评估 GP 功能。
结果:抑制 GP 功能的最小有效氯化钙浓度为 0.5 mmol/l。CaCl(0.5 mmol/l,n=18 GP)或盐水(n=18 GP)微注射入 GP 后 3 周,GP 功能、神经活性和心房颤动易感性增加以及快速心房起搏(1200 次/分钟)的有效不应期缩短反应均被 CaCl 微注射抑制。经冠状动脉内输注 Ca-MNP 后,外部电磁体将 Ca-MNP 拉至靶向 GP,并在 15 分钟内抑制 GP 功能(n=6 GP)。
结论:Ca-MNP 可以通过钙介导的神经毒性被磁性靶向以抑制 GP 功能。这种新方法可能用于治疗与心脏自主神经系统过度活跃相关的心律失常,例如心房颤动早期阶段,心肌损伤最小。
JACC Clin Electrophysiol. 2018-8-29
Circ Arrhythm Electrophysiol. 2014-5-23
J Am Coll Cardiol. 2021-1-5
Circulation. 2010-12-6
J Nanobiotechnology. 2024-8-30
Front Cardiovasc Med. 2022-10-26
Front Cardiovasc Med. 2021-12-9
Cardiovasc Res. 2021-6-16
Cardiol J. 2022
J Atr Fibrillation. 2011-9-30
Recent Pat Drug Deliv Formul. 2017
Biochim Biophys Acta Gen Subj. 2017-2-20
J Am Coll Cardiol. 2016-9-13
Nanomedicine (Lond). 2015-10