Suppr超能文献

描述福岛第一核电站事故后空气剂量率的区域尺度时间演化特征。

Characterizing regional-scale temporal evolution of air dose rates after the Fukushima Daiichi Nuclear Power Plant accident.

机构信息

Earth Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 74R-316C, Berkeley, CA 94720-8126, USA.

Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan.

出版信息

J Environ Radioact. 2019 Dec;210:105808. doi: 10.1016/j.jenvrad.2018.09.006. Epub 2018 Oct 15.

Abstract

In this study, we quantify the temporal changes of air dose rates in the regional scale around the Fukushima Dai-ichi Nuclear Power Plant in Japan, and predict the spatial distribution of air dose rates in the future. We first apply the Bayesian geostatistical method developed by Wainwright et al. (2017) to integrate multiscale datasets including ground-based walk and car surveys, and airborne surveys, all of which have different scales, resolutions, spatial coverage, and accuracy. This method is based on geostatistics to represent spatial heterogeneous structures, and also on Bayesian hierarchical models to integrate multiscale, multi-type datasets in a consistent manner. We apply this method to the datasets from three years: 2014 to 2016. The temporal changes among the three integrated maps enables us to characterize the spatiotemporal dynamics of radiation air dose rates. The data-driven ecological decay model is then coupled with the integrated map to predict future dose rates. Results show that the air dose rates are decreasing consistently across the region. While slower in the forested region, the decrease is particularly significant in the town area. The decontamination has contributed to significant reduction of air dose rates. By 2026, the air dose rates will continue to decrease, and the area above 3.8 μSv/h will be almost fully contained within the non-residential forested zone.

摘要

在这项研究中,我们量化了日本福岛第一核电站周围区域的空气剂量率随时间的变化,并预测了未来的空气剂量率空间分布。我们首先应用 Wainwright 等人(2017)开发的贝叶斯地质统计学方法,整合了多尺度数据集,包括地面步行和汽车调查以及航空调查,所有这些数据集都具有不同的尺度、分辨率、空间覆盖范围和精度。该方法基于地质统计学来表示空间异质结构,同时也基于贝叶斯层次模型以一致的方式整合多尺度、多类型数据集。我们将该方法应用于 2014 年至 2016 年的三年数据集。三个综合图之间的时间变化使我们能够描述辐射空气剂量率的时空动态。然后,数据驱动的生态衰减模型与综合图耦合以预测未来的剂量率。结果表明,该地区的空气剂量率持续下降。虽然在森林地区下降速度较慢,但在城镇地区下降幅度尤其显著。去污工作对空气剂量率的显著降低做出了贡献。到 2026 年,空气剂量率将继续下降,3.8μSv/h 以上的区域将几乎完全包含在非居民林区内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验