Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India.
Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India.
EBioMedicine. 2018 Nov;37:442-452. doi: 10.1016/j.ebiom.2018.09.049. Epub 2018 Oct 15.
Plasmodium falciparum and Plasmodium vivax are two major parasites responsible for malaria which remains a threat to almost 50% of world's population despite decade-long eradication program. One possible reason behind this conundrum is that the bases of clinical variability in malaria caused by either species are complex and poorly understood.
Whole-genome transcriptome was analyzed to identify the active and predominant pathways in the PBMC of P. falciparum and P. vivax infected malaria patients. Deregulated genes were identified and annotated using R Bioconductor and DAVID/KEGG respectively. Genetic and functional regulation of CD14, a prioritized candidate, were established by quantitative RT-PCR, genotyping using RFLP and resequencing, mapping of transcription factor binding using CONSITE and TFBIND, dual luciferase assay, western blot analysis, RNAi- mediated gene knockdown and chromatin-immunoprecipation.
The study highlighted that deregulation of host immune and inflammatory genes particularly CD14 as a key event in P. falciparum malaria. An abundance of allele-C of rs5744454, located in CD14 promoter, in severe malaria motivated us to establish an allele-specific regulation of CD14 by SP1. An enhancement of SP1 and CD14 expression was observed in artemisinin treated human monocyte cell line.
Our data not only reinstates that CD14 of TLR pathway plays a predominant role in P. falciparum malaria, it establishes a functional basis for genetic association of rs5744454 with P. falciparum severe malaria by demonstrating a cis-regulatory role of this promoter polymorphism. Moreover, the study points towards a novel pharmacogenetic aspect of artemisinin-based anti-malarial therapy. FUND: DST-SERB, Govt. of India, SR/SO/HS-0056/2013.
疟原虫(Plasmodium falciparum)和间日疟原虫(Plasmodium vivax)是两种主要寄生虫,它们导致的疟疾对全球近 50%的人口构成威胁,尽管已经实施了长达十年的消除计划。造成这种困境的一个可能原因是,这两种疟原虫引起的疟疾临床变异的基础非常复杂,人们对其了解甚少。
通过分析全基因组转录组,鉴定出感染疟原虫的 PBMC 中的活跃和主要途径。使用 R Bioconductor 和 DAVID/KEGG 分别鉴定和注释失调基因。通过定量 RT-PCR、RFLP 和重测序鉴定 CD14 的遗传和功能调控、使用 CONSITE 和 TFBIND 映射转录因子结合、双荧光素酶测定、Western blot 分析、RNAi 介导的基因敲低和染色质免疫沉淀。
该研究强调了宿主免疫和炎症基因的失调,特别是 CD14,这是恶性疟原虫疟疾的关键事件。位于 CD14 启动子内的 rs5744454 等位基因-C 在严重疟疾中的丰度促使我们建立了 CD14 的等位基因特异性 SP1 调控。在青蒿素处理的人单核细胞系中观察到 SP1 和 CD14 表达增强。
我们的数据不仅证实了 TLR 途径的 CD14 在恶性疟原虫疟疾中起主要作用,而且通过证明该启动子多态性的顺式调控作用,为 rs5744454 与恶性疟原虫严重疟疾的遗传关联建立了功能基础。此外,该研究还指出了基于青蒿素的抗疟治疗的新的药物遗传学方面。资金:DST-SERB,印度政府,SR/SO/HS-0056/2013。