Suppr超能文献

相似文献

1
Narrow bounds for the quantum capacity of thermal attenuators.
Nat Commun. 2018 Oct 18;9(1):4339. doi: 10.1038/s41467-018-06848-0.
2
Bosonic Quantum Communication across Arbitrarily High Loss Channels.
Phys Rev Lett. 2020 Sep 11;125(11):110504. doi: 10.1103/PhysRevLett.125.110504.
3
Energy-Constrained LOCC-Assisted Quantum Capacity of the Bosonic Dephasing Channel.
Entropy (Basel). 2023 Jun 29;25(7):1001. doi: 10.3390/e25071001.
4
Estimating Quantum and Private Capacities of Gaussian Channels via Degradable Extensions.
Phys Rev Lett. 2021 Nov 19;127(21):210501. doi: 10.1103/PhysRevLett.127.210501.
5
Author Correction: Narrow bounds for the quantum capacity of thermal attenuators.
Nat Commun. 2019 Jan 15;10(1):316. doi: 10.1038/s41467-019-08338-3.
6
Enhanced energy-constrained quantum communication over bosonic Gaussian channels.
Nat Commun. 2020 Jan 23;11(1):457. doi: 10.1038/s41467-020-14329-6.
7
Quantum Probes for Ohmic Environments at Thermal Equilibrium.
Entropy (Basel). 2019 May 12;21(5):486. doi: 10.3390/e21050486.
8
Extendibility Limits the Performance of Quantum Processors.
Phys Rev Lett. 2019 Aug 16;123(7):070502. doi: 10.1103/PhysRevLett.123.070502.
9
Upper and lower bounds for the ergodic capacity of MIMO Jacobi fading channels.
Opt Express. 2017 May 29;25(11):12144-12151. doi: 10.1364/OE.25.012144.
10
Upper Bounds on Device-Independent Quantum Key Distribution.
Phys Rev Lett. 2021 Apr 23;126(16):160501. doi: 10.1103/PhysRevLett.126.160501.

引用本文的文献

1
Quantum capacities of transducers.
Nat Commun. 2022 Nov 5;13(1):6698. doi: 10.1038/s41467-022-34373-8.
2
Convergence Rates for the Quantum Central Limit Theorem.
Commun Math Phys. 2021;383(1):223-279. doi: 10.1007/s00220-021-03988-1. Epub 2021 Feb 15.
3
Enhanced energy-constrained quantum communication over bosonic Gaussian channels.
Nat Commun. 2020 Jan 23;11(1):457. doi: 10.1038/s41467-020-14329-6.

本文引用的文献

1
Fundamental limits of repeaterless quantum communications.
Nat Commun. 2017 Apr 26;8:15043. doi: 10.1038/ncomms15043.
2
Unbounded number of channel uses may be required to detect quantum capacity.
Nat Commun. 2015 Mar 31;6:6739. doi: 10.1038/ncomms7739.
3
Quantum technologies with hybrid systems.
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):3866-73. doi: 10.1073/pnas.1419326112. Epub 2015 Mar 3.
4
Quantum state majorization at the output of bosonic Gaussian channels.
Nat Commun. 2014 May 8;5:3826. doi: 10.1038/ncomms4826.
5
Quantum channels and their entropic characteristics.
Rep Prog Phys. 2012 Apr;75(4):046001. doi: 10.1088/0034-4885/75/4/046001. Epub 2012 Mar 7.
6
Majorization theory approach to the Gaussian channel minimum entropy conjecture.
Phys Rev Lett. 2012 Mar 16;108(11):110505. doi: 10.1103/PhysRevLett.108.110505.
7
Quantum communication with zero-capacity channels.
Science. 2008 Sep 26;321(5897):1812-5. doi: 10.1126/science.1162242. Epub 2008 Aug 21.
8
Quantum capacities of bosonic channels.
Phys Rev Lett. 2007 Mar 30;98(13):130501. doi: 10.1103/PhysRevLett.98.130501. Epub 2007 Mar 26.
9
Degenerate quantum codes for Pauli channels.
Phys Rev Lett. 2007 Jan 19;98(3):030501. doi: 10.1103/PhysRevLett.98.030501. Epub 2007 Jan 16.
10
Extremality of Gaussian quantum states.
Phys Rev Lett. 2006 Mar 3;96(8):080502. doi: 10.1103/PhysRevLett.96.080502. Epub 2006 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验