Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.
Departamento de Análisis Matemático and Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Nat Commun. 2015 Mar 31;6:6739. doi: 10.1038/ncomms7739.
Transmitting data reliably over noisy communication channels is one of the most important applications of information theory, and is well understood for channels modelled by classical physics. However, when quantum effects are involved, we do not know how to compute channel capacities. This is because the formula for the quantum capacity involves maximizing the coherent information over an unbounded number of channel uses. In fact, entanglement across channel uses can even increase the coherent information from zero to non-zero. Here we study the number of channel uses necessary to detect positive coherent information. In all previous known examples, two channel uses already sufficed. It might be that only a finite number of channel uses is always sufficient. We show that this is not the case: for any number of uses, there are channels for which the coherent information is zero, but which nonetheless have capacity.
在噪声通信信道上可靠地传输数据是信息论最重要的应用之一,对于经典物理模型的信道,这已经得到了很好的理解。然而,当涉及到量子效应时,我们不知道如何计算信道容量。这是因为量子容量的公式涉及到在无限数量的信道使用中最大化相干信息。事实上,信道使用之间的纠缠甚至可以将相干信息从零增加到非零。在这里,我们研究了检测正相干信息所需的信道使用数量。在之前所有已知的例子中,两个信道使用就已经足够了。也许只有有限数量的信道使用总是足够的。我们表明事实并非如此:对于任何数量的使用,都有一些信道的相干信息为零,但它们仍然具有容量。