Suppr超能文献

PinSoRo 数据集:支持儿童-儿童和儿童-机器人社会动态的数据分析研究。

The PInSoRo dataset: Supporting the data-driven study of child-child and child-robot social dynamics.

机构信息

Bristol Robotics Lab, University of the West of England, Bristol, United Kingdom.

Centre for Robotics and Neural Systems, University of Plymouth, Plymouth, United Kingdom.

出版信息

PLoS One. 2018 Oct 19;13(10):e0205999. doi: 10.1371/journal.pone.0205999. eCollection 2018.

Abstract

The study of the fine-grained social dynamics between children is a methodological challenge, yet a good understanding of how social interaction between children unfolds is important not only to Developmental and Social Psychology, but recently has become relevant to the neighbouring field of Human-Robot Interaction (HRI). Indeed, child-robot interactions are increasingly being explored in domains which require longer-term interactions, such as healthcare and education. For a robot to behave in an appropriate manner over longer time scales, its behaviours have to be contingent and meaningful to the unfolding relationship. Recognising, interpreting and generating sustained and engaging social behaviours is as such an important-and essentially, open-research question. We believe that the recent progress of machine learning opens new opportunities in terms of both analysis and synthesis of complex social dynamics. To support these approaches, we introduce in this article a novel, open dataset of child social interactions, designed with data-driven research methodologies in mind. Our data acquisition methodology relies on an engaging, methodologically sound, but purposefully underspecified free-play interaction. By doing so, we capture a rich set of behavioural patterns occurring in natural social interactions between children. The resulting dataset, called the PInSoRo dataset, comprises 45+ hours of hand-coded recordings of social interactions between 45 child-child pairs and 30 child-robot pairs. In addition to annotations of social constructs, the dataset includes fully calibrated video recordings, 3D recordings of the faces, skeletal informations, full audio recordings, as well as game interactions.

摘要

研究儿童之间的细微社会动态是一项具有挑战性的方法学问题,但深入了解儿童之间的社会互动如何展开不仅对发展心理学和社会心理学很重要,而且最近与邻近的人机交互(HRI)领域也相关。实际上,在需要长期互动的领域,例如医疗保健和教育,越来越多地探索儿童与机器人的互动。为了使机器人在更长的时间尺度上以适当的方式行为,其行为必须与正在展开的关系相关且有意义。识别、解释和生成持续且吸引人的社交行为是一个重要的——本质上也是开放的研究问题。我们相信,机器学习的最新进展为复杂社会动态的分析和综合提供了新的机会。为了支持这些方法,我们在本文中引入了一个新的、开放的儿童社交互动数据集,该数据集是基于数据驱动的研究方法设计的。我们的数据采集方法依赖于一种引人入胜、方法合理但目的明确的不指定的自由游戏互动。通过这样做,我们捕捉到了在儿童之间自然社交互动中发生的丰富行为模式。由此产生的数据集称为 PInSoRo 数据集,包含 45 多小时的 45 对儿童对儿童和 30 对儿童对机器人的社会互动的手工编码记录。除了社交结构的注释外,该数据集还包括完全校准的视频记录、面部的 3D 记录、骨骼信息、完整的音频记录以及游戏交互。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c3e/6195299/02797401eb81/pone.0205999.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验