Fraile Marc, Calvo-Barajas Natalia, Apeiron Anastasia Sophia, Varni Giovanna, Lindblad Joakim, Sladoje Nataša, Castellano Ginevra
Department of Information Technology, Uppsala University, Uppsala, Sweden.
Department of Information and Computing Sciences, Utrecht University, Utrecht, Netherlands.
Front Robot AI. 2025 Jul 21;12:1547578. doi: 10.3389/frobt.2025.1547578. eCollection 2025.
Friendship and rapport play an important role in the formation of constructive social interactions, and have been widely studied in education due to their impact on learning outcomes. Given the growing interest in automating the analysis of such phenomena through Machine Learning, access to annotated interaction datasets is highly valuable. However, no dataset on child-child interactions explicitly capturing rapport currently exists. Moreover, despite advances in the automatic analysis of human behavior, no previous work has addressed the prediction of rapport in child-child interactions in educational settings. We present UpStory - the Uppsala Storytelling dataset: a novel dataset of naturalistic dyadic interactions between primary school aged children, with an experimental manipulation of rapport. Pairs of children aged 8-10 participate in a task-oriented activity: designing a story together, while being allowed free movement within the play area. We promote balanced collection of different levels of rapport by using a within-subjects design: self-reported friendships are used to pair each child twice, either minimizing or maximizing pair separation in the friendship network. The dataset contains data for 35 pairs, totaling 3 h 40 m of audiovisual recordings. It includes two video sources, and separate voice recordings per child. An anonymized version of the dataset is made publicly available, containing per-frame head pose, body pose, and face features. Finally, we confirm the informative power of the UpStory dataset by establishing baselines for the prediction of rapport. A simple approach achieves 68% test accuracy using data from one child, and 70% test accuracy aggregating data from a pair.
友谊和融洽关系在建设性社会互动的形成中发挥着重要作用,并且由于它们对学习成果的影响,在教育领域受到了广泛研究。鉴于通过机器学习自动分析此类现象的兴趣日益浓厚,获取带注释的互动数据集非常有价值。然而,目前尚无明确捕捉融洽关系的儿童间互动数据集。此外,尽管在人类行为自动分析方面取得了进展,但之前没有研究涉及教育环境中儿童间互动融洽关系的预测。我们展示了UpStory——乌普萨拉讲故事数据集:一个关于小学适龄儿童自然主义二元互动的新颖数据集,其中融洽关系经过了实验性操控。8至10岁的儿童对参与一项面向任务的活动:一起设计一个故事,同时在游戏区域内可以自由活动。我们通过采用被试内设计来促进不同融洽关系水平的均衡收集:利用自我报告的友谊将每个孩子配对两次,要么在友谊网络中最小化要么最大化配对间隔。该数据集包含35对数据,总计3小时40分钟的视听记录。它包括两个视频源,以及每个孩子单独的语音记录。该数据集的匿名版本已公开提供,包含逐帧的头部姿势、身体姿势和面部特征。最后,我们通过建立融洽关系预测的基线来确认UpStory数据集的信息价值。一种简单的方法使用来自一个孩子的数据达到了68%的测试准确率,聚合来自一对孩子的数据时测试准确率达到70%。