Suppr超能文献

轻链淀粉样变性形成及细胞毒性检测

Assays for Light Chain Amyloidosis Formation and Cytotoxicity.

作者信息

Blancas-Mejia Luis M, Misra Pinaki, Dick Christopher J, Marin-Argany Marta, Redhage Keely R, Cooper Shawna A, Ramirez-Alvarado Marina

机构信息

Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.

Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain.

出版信息

Methods Mol Biol. 2019;1873:123-153. doi: 10.1007/978-1-4939-8820-4_8.

Abstract

Common biophysical techniques like absorption and fluorescence spectroscopy, microscopy, and light scattering studies have been in use to investigate fibril assembly for a long time. However, there is sometimes a lack of consensus from the findings of an individual technique when compared in parallel with the other techniques. In this chapter, we aim to provide a concise compilation of techniques that can effectively be used to obtain a comprehensive representation of the structural, aggregation, and toxicity determinants in immunoglobulin light chain amyloidosis. We start by giving a brief introduction on amyloid assembly and the advantages of using simple and readily available techniques to study aggregation. After an overview on preparation of protein to set up parallel experiments, we provide a systematic description of the in vitro techniques used to study aggregation in AL protein. Additionally, we thoroughly discuss the steps needed in our experience during the individual experiments for better reproducibility and data analysis.

摘要

诸如吸收光谱和荧光光谱、显微镜技术以及光散射研究等常见的生物物理技术,长期以来一直被用于研究纤维组装。然而,与其他技术并行比较时,个别技术的研究结果有时缺乏一致性。在本章中,我们旨在简要汇编一些技术,这些技术可有效用于全面呈现免疫球蛋白轻链淀粉样变性中的结构、聚集和毒性决定因素。我们首先简要介绍淀粉样蛋白组装以及使用简单且易于获得的技术研究聚集的优势。在概述用于开展平行实验的蛋白质制备方法后,我们系统描述用于研究AL蛋白聚集的体外技术。此外,我们还深入讨论了根据我们的经验在各个实验中为实现更好的可重复性和数据分析所需的步骤。

相似文献

1
Assays for Light Chain Amyloidosis Formation and Cytotoxicity.
Methods Mol Biol. 2019;1873:123-153. doi: 10.1007/978-1-4939-8820-4_8.
2
Immunoglobulin light chain amyloid aggregation.
Chem Commun (Camb). 2018 Sep 20;54(76):10664-10674. doi: 10.1039/c8cc04396e.
3
The amyloid fibrils of the constant domain of immunoglobulin light chain.
FEBS Lett. 2010 Aug 4;584(15):3348-53. doi: 10.1016/j.febslet.2010.06.019. Epub 2010 Jun 18.
5
Differences in Protein Concentration Dependence for Nucleation and Elongation in Light Chain Amyloid Formation.
Biochemistry. 2017 Feb 7;56(5):757-766. doi: 10.1021/acs.biochem.6b01043. Epub 2017 Jan 24.
7
Effect of single point mutations in a form of systemic amyloidosis.
Protein Sci. 2015 Sep;24(9):1451-62. doi: 10.1002/pro.2730. Epub 2015 Jul 14.
8
Recruitment of Light Chains by Homologous and Heterologous Fibrils Shows Distinctive Kinetic and Conformational Specificity.
Biochemistry. 2016 May 31;55(21):2967-78. doi: 10.1021/acs.biochem.6b00090. Epub 2016 May 16.
9
Biophysical and Spectroscopic Methods for Monitoring Protein Misfolding and Amyloid Aggregation.
Methods Mol Biol. 2019;1873:3-18. doi: 10.1007/978-1-4939-8820-4_1.
10
Barriers to Small Molecule Drug Discovery for Systemic Amyloidosis.
Molecules. 2021 Jun 11;26(12):3571. doi: 10.3390/molecules26123571.

引用本文的文献

1
An evolutionarily conserved function of C-reactive protein is to prevent the formation of amyloid fibrils.
Front Immunol. 2024 Sep 16;15:1466865. doi: 10.3389/fimmu.2024.1466865. eCollection 2024.
2
Biophysical characterization of human-cell-expressed, full-length κI O18/O8, AL-09, λ6a, and Wil immunoglobulin light chains.
Biochim Biophys Acta Proteins Proteom. 2024 May 1;1872(3):140993. doi: 10.1016/j.bbapap.2023.140993. Epub 2023 Dec 31.
4
Structurally Altered, Not Wild-Type, Pentameric C-Reactive Protein Inhibits Formation of Amyloid-β Fibrils.
J Immunol. 2022 Sep 15;209(6):1180-1188. doi: 10.4049/jimmunol.2200148. Epub 2022 Aug 17.
7
Light chain amyloidosis induced inflammatory changes in cardiomyocytes and adipose-derived mesenchymal stromal cells.
Leukemia. 2020 May;34(5):1383-1393. doi: 10.1038/s41375-019-0640-4. Epub 2019 Dec 3.

本文引用的文献

1
ThT 101: a primer on the use of thioflavin T to investigate amyloid formation.
Amyloid. 2017 Mar;24(1):1-16. doi: 10.1080/13506129.2017.1304905. Epub 2017 Apr 10.
2
Cell Damage in Light Chain Amyloidosis: FIBRIL INTERNALIZATION, TOXICITY AND CELL-MEDIATED SEEDING.
J Biol Chem. 2016 Sep 16;291(38):19813-25. doi: 10.1074/jbc.M116.736736. Epub 2016 Jul 26.
3
How Glycosaminoglycans Promote Fibrillation of Salmon Calcitonin.
J Biol Chem. 2016 Aug 5;291(32):16849-62. doi: 10.1074/jbc.M116.715466. Epub 2016 Jun 8.
4
Recruitment of Light Chains by Homologous and Heterologous Fibrils Shows Distinctive Kinetic and Conformational Specificity.
Biochemistry. 2016 May 31;55(21):2967-78. doi: 10.1021/acs.biochem.6b00090. Epub 2016 May 16.
7
Molecular mechanisms of protein aggregation from global fitting of kinetic models.
Nat Protoc. 2016 Feb;11(2):252-72. doi: 10.1038/nprot.2016.010. Epub 2016 Jan 7.
8
A Palette of Fluorescent Thiophene-Based Ligands for the Identification of Protein Aggregates.
Chemistry. 2015 Oct 19;21(43):15133-7. doi: 10.1002/chem.201502999. Epub 2015 Sep 21.
9
Effect of acidic and basic pH on Thioflavin T absorbance and fluorescence.
Eur Biophys J. 2015 May;44(4):249-61. doi: 10.1007/s00249-015-1019-8. Epub 2015 Mar 22.
10
Differential effects on light chain amyloid formation depend on mutations and type of glycosaminoglycans.
J Biol Chem. 2015 Feb 20;290(8):4953-4965. doi: 10.1074/jbc.M114.615401. Epub 2014 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验