Suppr超能文献

利用太赫兹光谱快速检测水稻中的转基因成分。

Quick Test for Transgenic Components in Rice Using Terahertz Spectra.

机构信息

1 Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China.

2 Grain Information Processing and Control, Key Laboratory of Ministry of Education, Henan University of Technology, Zhengzhou, China.

出版信息

Appl Spectrosc. 2019 Feb;73(2):171-181. doi: 10.1177/0003702818812085. Epub 2018 Nov 16.

Abstract

The terahertz (THz) spectrum of 0.2-1.6 THz (6.6-52.8 cm) was used to identify the existence of transgenic rice Bt63 contents in non-GMO rice using a THz time-domain spectroscopy system. Principal component analysis (PCA) was used to extract the feature data based on the cumulative rate of information contribution ( > 90%); the top four principal components were selected and a radial basis function neural network (RBFNN) method was then trained and used. Three selection radial basis functions including a Gaussian function were used to identify the three types (strong positive, weak positive, and negative). The results show that the samples were identified with an accuracy of nearly 90%; additionally, the positive identification rate was > 87.5% and the negative identification rate reached 100% using the proposed method (PCA-RBF). The proposed approach was then compared with other methods, including back propagation (BP) neural networks and support vector machine (SVM). The results of the comparison show that the accuracy of PCA-RBF method reaches 92% in total and all the rest are < 90% using 100 samples. Obviously, the proposed approach outperforms the other methods and also indicates that the proposed method, in combination with THz spectroscopy, is efficient and practical for transgenic ingredient identification in rice.

摘要

利用太赫兹时域光谱系统,在非转基因大米中鉴定转 Bt63 基因大米的存在,检测了 0.2-1.6 太赫兹(6.6-52.8cm)的太赫兹光谱。基于信息贡献累积率(>90%),采用主成分分析(PCA)提取特征数据;选择前四个主成分,并采用径向基函数神经网络(RBFNN)方法进行训练和应用。三种选择的径向基函数包括高斯函数,用于识别三种类型(强阳性、弱阳性和阴性)。结果表明,使用该方法,样本的识别准确率接近 90%;此外,阳性识别率>87.5%,阴性识别率达到 100%(PCA-RBF)。将该方法与其他方法(包括反向传播神经网络(BP)和支持向量机(SVM))进行了比较。比较结果表明,PCA-RBF 方法的准确率总计达到 92%,而其他所有方法的准确率均<90%,使用的样本数均为 100 个。显然,与其他方法相比,该方法具有更好的性能,表明太赫兹光谱与该方法相结合,在大米中转基因成分鉴定方面是高效实用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验