Suppr超能文献

基于太赫兹光谱结合流形学习和改进支持向量机识别香豆素类食品添加剂。

Identification of coumarin-based food additives using terahertz spectroscopy combined with manifold learning and improved support vector machine.

机构信息

Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, China.

出版信息

J Food Sci. 2022 Mar;87(3):1108-1118. doi: 10.1111/1750-3841.16064. Epub 2022 Feb 4.

Abstract

The purpose of this paper is to use terahertz (THz) spectroscopy combined with manifold learning and improved support vector machine (SVM) model to identify the coumarin-based food additives. The 216 THz absorbance spectra (144 for calibration set and 72 for prediction set) of six coumarin-based food additives are measured by using THz time-domain spectroscopy (THz-TDS) in the range of 0.5-2.0 THz. The method (P-t-SNE) combined principal component analysis (PCA) with manifold learning t-distributed stochastic neighbor embedding (t-SNE) is used for feature extraction of the THz spectra. Then, an improved SVM using differential evolution (DE) to improve gray wolf optimization (GWO) to optimize parameters is proposed. Finally, the result shows that the prediction set accuracy of PCA-DEGWO-SVM, P-t-SNE-DEGWO-SVM, and P-t-SNE-GWO-SVM models are 97.22%, 98.61%, and 95.83%, respectively, indicating that the accuracy by P-t-SNE is increased by about 1.39% compared with that processed by PCA, and the accuracy by DEGWO is also increased by about 2.78% compared with that processed by GWO. In conclusion, the improved model (P-t-SNE-DEGWO-SVM) has the best identification effect, and it is proved to be an effective method to identify coumarin-based food additives. PRACTICAL APPLICATION: The method used in this paper can be applied in the field of food safety detection. When detecting coumarin-based food additives, the method proposed in this paper is more time-saving and efficient than traditional detection methods. Through some more tests and adjustments, it will be possible to achieve rapid and on-site identification of various food additives.

摘要

本文旨在使用太赫兹(THz)光谱结合流形学习和改进的支持向量机(SVM)模型来识别香豆素类食品添加剂。在 0.5-2.0 THz 范围内,使用太赫兹时域光谱(THz-TDS)测量了六种香豆素类食品添加剂的 216 个太赫兹吸收光谱(校准集 144 个,预测集 72 个)。采用主成分分析(PCA)与流形学习 t 分布随机邻域嵌入(t-SNE)相结合的方法(P-t-SNE)对太赫兹光谱进行特征提取。然后,提出了一种使用差分进化(DE)改进灰狼优化(GWO)来优化参数的改进 SVM。最后,结果表明,PCA-DEGWO-SVM、P-t-SNE-DEGWO-SVM 和 P-t-SNE-GWO-SVM 模型的预测集准确率分别为 97.22%、98.61%和 95.83%,表明与 PCA 处理相比,P-t-SNE 的准确率提高了约 1.39%,与 GWO 处理相比,DEGWO 的准确率也提高了约 2.78%。总之,改进后的模型(P-t-SNE-DEGWO-SVM)具有最佳的识别效果,证明是识别香豆素类食品添加剂的有效方法。实际应用:本文所使用的方法可以应用于食品安全检测领域。在检测香豆素类食品添加剂时,本文提出的方法比传统检测方法更加省时高效。通过更多的测试和调整,有望实现对各种食品添加剂的快速现场识别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验