Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States.
MSU-DOE Plant Research Laboratory , Michigan State University , 612 Wilson Road , East Lansing , Michigan 48824 , United States.
Nano Lett. 2018 Nov 14;18(11):7030-7037. doi: 10.1021/acs.nanolett.8b02991. Epub 2018 Oct 31.
Bacterial microcompartments (BMCs) are organelles composed of a selectively permeable protein shell that encapsulates enzymes involved in CO fixation (carboxysomes) or carbon catabolism (metabolosomes). Confinement of sequential reactions by the BMC shell presumably increases the efficiency of the pathway by reducing the crosstalk of metabolites, release of toxic intermediates, and accumulation of inhibitory products. Because BMCs are composed entirely of protein and self-assemble, they are an emerging platform for engineering nanoreactors and molecular scaffolds. However, testing designs for assembly and function through in vivo expression is labor-intensive and has limited the potential of BMCs in bioengineering. Here, we developed a new method for in vitro assembly of defined nanoscale BMC architectures: shells and nanotubes. By inserting a "protecting group", a short ubiquitin-like modifier (SUMO) domain, self-assembly of shell proteins in vivo was thwarted, enabling preparation of concentrates of shell building blocks. Addition of the cognate protease removes the SUMO domain and subsequent mixing of the constituent shell proteins in vitro results in the self-assembly of three types of supramolecular architectures: a metabolosome shell, a carboxysome shell, and a BMC protein-based nanotube. We next applied our method to generate a metabolosome shell engineered with a hyper-basic luminal surface, allowing for the encapsulation of biotic or abiotic cargos functionalized with an acidic accessory group. This is the first demonstration of using charge complementarity to encapsulate diverse cargos in BMC shells. Collectively, our work provides a generally applicable method for in vitro assembly of natural and engineered BMC-based architectures.
细菌微室(BMCs)是由选择性渗透的蛋白质外壳组成的细胞器,其中包含参与 CO2 固定(羧化体)或碳分解代谢(代谢体)的酶。BMC 外壳对连续反应的限制可能通过减少代谢物的串扰、释放有毒中间体和积累抑制产物来提高途径的效率。由于 BMC 完全由蛋白质组成并自行组装,因此它们是工程纳米反应器和分子支架的新兴平台。然而,通过体内表达测试组装和功能的设计既费力又限制了 BMC 在生物工程中的潜力。在这里,我们开发了一种体外组装定义的纳米级 BMC 结构的新方法:外壳和纳米管。通过插入“保护基团”,即短泛素样修饰物(SUMO)结构域,体内阻止了外壳蛋白的自组装,从而可以制备外壳构建块的浓缩物。添加同源蛋白酶去除 SUMO 结构域,随后在体外混合组成外壳的蛋白质,导致三种类型的超分子结构的自组装:代谢体外壳、羧化体外壳和基于 BMC 蛋白质的纳米管。我们接下来应用我们的方法来生成具有超碱性内腔表面的代谢体外壳,允许封装具有酸性辅助基团的生物或非生物有效载荷。这是首次利用电荷互补性将不同的有效载荷封装在 BMC 外壳中的演示。总的来说,我们的工作为体外组装天然和工程 BMC 基结构提供了一种普遍适用的方法。