Garcia-Alles Luis F, Lesniewska Eric, Root Katharina, Aubry Nathalie, Pocholle Nicolas, Mendoza Carlos I, Bourillot Eric, Barylyuk Konstantin, Pompon Denis, Zenobi Renato, Reguera David, Truan Gilles
LISBP, CNRS, INRA, INSA, University of Toulouse, Toulouse, France.
ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, France.
PLoS One. 2017 Sep 21;12(9):e0185109. doi: 10.1371/journal.pone.0185109. eCollection 2017.
CcmK proteins are major constituents of icosahedral shells of β-carboxysomes, a bacterial microcompartment that plays a key role for CO2 fixation in nature. Supported by the characterization of bidimensional (2D) layers of packed CcmK hexamers in crystal and electron microscopy structures, CcmK are assumed to be the major components of icosahedral flat facets. Here, we reassessed the validity of this model by studying CcmK isoforms from Synechocystis sp. PCC6803. Native mass spectrometry studies confirmed that CcmK are hexamers in solution. Interestingly, potential pre-assembled intermediates were also detected with CcmK2. Atomic-force microscopy (AFM) imaging under quasi-physiological conditions confirmed the formation of canonical flat sheets with CcmK4. Conversely, CcmK2 formed both canonical and striped-patterned patches, while CcmK1 assembled into remarkable supra-hexameric curved honeycomb-like mosaics. Mutational studies ascribed the propensity of CcmK1 to form round assemblies to a combination of two features shared by at least one CcmK isoform in most β-cyanobacteria: a displacement of an α helical portion towards the hexamer edge, where a potential phosphate binding funnel forms between packed hexamers, and the presence of a short C-terminal extension in CcmK1. All-atom molecular dynamics supported a contribution of phosphate molecules sandwiched between hexamers to bend CcmK1 assemblies. Formation of supra-hexameric curved structures could be reproduced in coarse-grained simulations, provided that adhesion forces to the support were weak. Apart from uncovering unprecedented CcmK self-assembly features, our data suggest the possibility that transitions between curved and flat assemblies, following cargo maturation, could be important for the biogenesis of β-carboxysomes, possibly also of other BMC.
CcmK蛋白是β-羧酶体二十面体外壳的主要成分,β-羧酶体是一种细菌微区室,在自然界的二氧化碳固定过程中起着关键作用。基于晶体和电子显微镜结构中堆积的CcmK六聚体二维(2D)层的表征,CcmK被认为是二十面体平面的主要成分。在这里,我们通过研究集胞藻属PCC6803的CcmK亚型重新评估了该模型的有效性。原生质谱研究证实CcmK在溶液中为六聚体。有趣的是,还检测到了CcmK2的潜在预组装中间体。在准生理条件下的原子力显微镜(AFM)成像证实了CcmK4形成了典型的平板。相反,CcmK2形成了典型的和条纹状的斑块,而CcmK1组装成了引人注目的超六聚体弯曲蜂窝状镶嵌体。突变研究表明,CcmK1形成圆形组装体的倾向归因于大多数β-蓝细菌中至少一种CcmK亚型共有的两个特征:α螺旋部分向六聚体边缘的位移,在堆积的六聚体之间形成一个潜在的磷酸盐结合漏斗,以及CcmK1中存在一个短的C端延伸。全原子分子动力学支持夹在六聚体之间的磷酸盐分子对CcmK1组装体弯曲的作用。只要对支撑物的粘附力较弱,超六聚体弯曲结构的形成就可以在粗粒度模拟中重现。除了揭示前所未有的CcmK自组装特征外,我们的数据还表明,货物成熟后弯曲和扁平组装体之间的转变可能对β-羧酶体的生物发生很重要,其他细菌微区室可能也是如此。