Suppr超能文献

揭示基于量子点的发光二极管工作不稳定的根源。

Unraveling the Origin of Operational Instability of Quantum Dot Based Light-Emitting Diodes.

作者信息

Chang Jun Hyuk, Park Philip, Jung Heeyoung, Jeong Byeong Guk, Hahm Donghyo, Nagamine Gabriel, Ko Jongkuk, Cho Jinhan, Padilha Lazaro A, Lee Doh C, Lee Changhee, Char Kookheon, Bae Wan Ki

机构信息

School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Korea.

Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States.

出版信息

ACS Nano. 2018 Oct 23;12(10):10231-10239. doi: 10.1021/acsnano.8b03386. Epub 2018 Oct 15.

Abstract

We investigate the operational instability of quantum dot (QD)-based light-emitting diodes (QLEDs). Spectroscopic analysis on the QD emissive layer within devices in chorus with the optoelectronic and electrical characteristics of devices discloses that the device efficiency of QLEDs under operation is indeed deteriorated by two main mechanisms. The first is the luminance efficiency drop of the QD emissive layer in the running devices owing to the accumulation of excess electrons in the QDs, which escalates the possibility of nonradiative Auger recombination processes in the QDs. The other is the electron leakage toward hole transport layers (HTLs) that accompanies irreversible physical damage to the HTL by creating nonradiative recombination centers. These processes are distinguishable in terms of the time scale and the reversibility, but both stem from a single origin, the discrepancy between electron versus hole injection rates into QDs. Based on experimental and calculation results, we propose mechanistic models for the operation of QLEDs in individual quantum dot levels and their degradation during operation and offer rational guidelines that promise the realization of high-performance QLEDs with proven operational stability.

摘要

我们研究了基于量子点(QD)的发光二极管(QLED)的工作不稳定性。结合器件的光电和电学特性对器件内量子点发光层进行光谱分析,结果表明,工作状态下QLED的器件效率确实因两种主要机制而降低。第一种是由于量子点中过量电子的积累,导致运行器件中量子点发光层的发光效率下降,这增加了量子点中非辐射俄歇复合过程的可能性。另一种是电子向空穴传输层(HTL)泄漏,同时通过产生非辐射复合中心对HTL造成不可逆的物理损伤。这些过程在时间尺度和可逆性方面是可区分的,但都源于一个单一的原因,即注入量子点的电子与空穴注入速率之间的差异。基于实验和计算结果,我们提出了量子点发光二极管在单个量子点水平上的工作及其在工作过程中退化的机理模型,并提供了合理的指导方针,有望实现具有可靠工作稳定性且高性能的量子点发光二极管。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验