Fundación Oceanografic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, 46005 Valencia, Spain
Fundación Oceanografic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, 46005 Valencia, Spain.
J Exp Biol. 2018 Dec 4;221(Pt 23):jeb179820. doi: 10.1242/jeb.179820.
To provide new insight into the pathophysiological mechanisms underlying gas emboli (GE) in bycaught loggerhead sea turtles (), we investigated the vasoactive characteristics of the pulmonary and systemic arteries, and the lung parenchyma (LP). Tissues were opportunistically excised from recently dead animals for studies of vasoactive responses to four different neurotransmitters: acetylcholine (ACh; parasympathetic), serotonin (5HT), adrenaline (Adr; sympathetic) and histamine. The significant amount of smooth muscle in the LP contracted in response to ACh, Adr and histamine. The intrapulmonary and systemic arteries contracted under both parasympathetic and sympathetic stimulation and when exposed to 5HT. However, proximal extrapulmonary arterial (PEPA) sections contracted in response to ACh and 5HT, whereas Adr caused relaxation. In sea turtles, the relaxation in the pulmonary artery was particularly pronounced at the level of the pulmonary artery sphincter (PASp), where the vessel wall was highly muscular. For comparison, we also studied tissue response in freshwater sliders turtles (). Both PEPA and LP from freshwater sliders contracted in response to 5HT, ACh and also Adr. We propose that in sea turtles, the dive response (parasympathetic tone) constricts the PEPA, LP and PASp, causing a pulmonary shunt and limiting gas uptake at depth, which reduces the risk of GE during long and deep dives. Elevated sympathetic tone caused by forced submersion during entanglement with fishing gear increases the pulmonary blood flow causing an increase in N uptake, potentially leading to the formation of blood and tissue GE at the surface. These findings provide potential physiological and anatomical explanations on how these animals have evolved a cardiac shunt pattern that regulates gas exchange during deep and prolonged diving.
为了深入了解被误捕的红海龟体内气体栓塞(GE)的病理生理机制,我们研究了肺和体循环动脉以及肺实质(LP)的血管活性特征。我们从最近死亡的动物身上获取组织样本,进行了四项不同神经递质(乙酰胆碱[ACh;副交感神经]、5-羟色胺[5HT]、肾上腺素[Adr;交感神经]和组胺)对血管活性反应的研究。LP 中的大量平滑肌对 ACh、Adr 和组胺有收缩反应。肺内和体循环动脉在副交感神经和交感神经刺激以及暴露于 5HT 时收缩。然而,近肺外动脉(PEPA)段对 ACh 和 5HT 有收缩反应,而 Adr 则引起舒张。在海龟中,肺动脉的舒张在肺动脉瓣(PASp)水平特别明显,那里的血管壁有很高的肌肉含量。相比之下,我们还研究了淡水棱皮龟组织的反应()。淡水棱皮龟的 PEPA 和 LP 都对 5HT、ACh 以及 Adr 有收缩反应。我们提出,在海龟中,潜水反应(副交感神经张力)使 PEPA、LP 和 PASp 收缩,导致肺分流,并限制在深处的气体摄取,从而降低在长时间和深潜中发生 GE 的风险。在与渔具纠缠时被迫潜水引起的交感神经张力增加会增加肺血流量,导致 N 摄取增加,这可能导致在表面形成血液和组织 GE。这些发现为这些动物如何进化出一种调节深潜和长时间潜水期间气体交换的心脏分流模式提供了潜在的生理和解剖学解释。