Suppr超能文献

理解颜色调谐规则并通过数据驱动的机器学习方法预测微生物视紫红质的吸收波长。

Understanding Colour Tuning Rules and Predicting Absorption Wavelengths of Microbial Rhodopsins by Data-Driven Machine-Learning Approach.

机构信息

Department of Computer Science, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Aichi, 466-8555, Japan.

PRESTO, Japan Science and Technological Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.

出版信息

Sci Rep. 2018 Oct 22;8(1):15580. doi: 10.1038/s41598-018-33984-w.

Abstract

The light-dependent ion-transport function of microbial rhodopsin has been widely used in optogenetics for optical control of neural activity. In order to increase the variety of rhodopsin proteins having a wide range of absorption wavelengths, the light absorption properties of various wild-type rhodopsins and their artificially mutated variants were investigated in the literature. Here, we demonstrate that a machine-learning-based (ML-based) data-driven approach is useful for understanding and predicting the light-absorption properties of microbial rhodopsin proteins. We constructed a database of 796 proteins consisting of microbial rhodopsin wildtypes and their variants. We then proposed an ML method that produces a statistical model describing the relationship between amino-acid sequences and absorption wavelengths and demonstrated that the fitted statistical model is useful for understanding colour tuning rules and predicting absorption wavelengths. By applying the ML method to the database, two residues that were not considered in previous studies are newly identified to be important to colour shift.

摘要

微生物视蛋白的光依赖离子转运功能已被广泛应用于光遗传学,用于光学控制神经活动。为了增加具有广泛吸收波长的视蛋白种类,文献中研究了各种野生型视蛋白及其人工突变变体的光吸收特性。在这里,我们证明了基于机器学习 (ML) 的数据驱动方法对于理解和预测微生物视蛋白的光吸收特性是有用的。我们构建了一个由 796 种蛋白质组成的数据库,包括微生物视蛋白的野生型及其变体。然后,我们提出了一种 ML 方法,该方法生成了一个统计模型,描述了氨基酸序列和吸收波长之间的关系,并证明拟合的统计模型有助于理解颜色调谐规则和预测吸收波长。通过将 ML 方法应用于数据库,新确定了两个在以前的研究中未被考虑的残基对颜色位移很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/605b/6197263/45489a0e98f0/41598_2018_33984_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验