Department of Life Science and Applied Chemistry & OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan.
Adv Exp Med Biol. 2021;1293:3-19. doi: 10.1007/978-981-15-8763-4_1.
The first light-sensing proteins used in optogenetics were rhodopsins. The word "rhodopsin" originates from the Greek words "rhodo" and "opsis," indicating rose and sight, respectively. Although the classical meaning of rhodopsin is the red-colored pigment in our eyes, the modern meaning of rhodopsin encompasses photoactive proteins containing a retinal chromophore in animals and microbes. Animal and microbial rhodopsins possess 11-cis and all-trans retinal, respectively, to capture light in seven transmembrane α-helices, and photoisomerizations into all-trans and 13-cis forms, respectively, initiate each function. We are able to find ion-transporting proteins in microbial rhodopsins, such as light-gated channels and light-driven pumps, which are the main tools in optogenetics. In this chapter, historical aspects and molecular properties of rhodopsins are introduced. In the first part, "what is rhodopsin?", general introduction of rhodopsin is presented. Then, molecular mechanism of bacteriorodopsin, a light-driven proton pump and the best-studied microbial rhodopsin, is described. In the section of channelrhodopsin, the light-gated ion channel, molecular properties, and several variants are introduced. As the history has proven, understanding the molecular mechanism of microbial rhodopsins is a prerequisite for useful functional design of optogenetics tools in future.
光遗传学中最初使用的感光蛋白是视蛋白。“视蛋白”一词源于希腊语“rhodo”和“opsis”,分别表示玫瑰色和视觉。虽然视蛋白的经典含义是我们眼睛中的红色色素,但在动物和微生物中,视蛋白的现代含义包括含有视黄醛发色团的光活性蛋白。动物和微生物视蛋白分别具有 11-顺式和全反式视黄醛,以在七个跨膜 α-螺旋中捕获光,光异构化为全反式和 13-顺式形式,分别引发每种功能。我们能够在微生物视蛋白中找到离子转运蛋白,例如光门通道和光驱动泵,它们是光遗传学的主要工具。在本章中,介绍了视蛋白的历史方面和分子特性。在第一部分“什么是视蛋白?”中,介绍了视蛋白的一般介绍。然后,描述了光驱动质子泵和研究最充分的微生物视蛋白——菌视紫红质的分子机制。在通道视蛋白部分,介绍了光门控离子通道、分子特性和几个变体。正如历史所证明的那样,理解微生物视蛋白的分子机制是未来有用的光遗传学工具功能设计的前提。