Biotechnology, Pharmacy and Chemistry Department , University of Siena , Siena 53100 , Italy.
Chemistry Department , Bowling Green State University , Bowling Green , Ohio 43403 , United States.
J Am Chem Soc. 2019 Jan 9;141(1):262-271. doi: 10.1021/jacs.8b09311. Epub 2018 Dec 28.
The engineering of microbial rhodopsins with enhanced fluorescence is of great importance in the expanding field of optogenetics. Here we report the discovery of two mutants (W76S/Y179F and L83Q) of a sensory rhodopsin from the cyanobacterium Anabaena PCC7120 with opposite fluorescence behavior. In fact, while W76S/Y179F displays, with respect to the wild-type protein, a nearly 10-fold increase in red-light emission, the second is not emissive. Thus, the W76S/Y179F, L83Q pair offers an unprecedented opportunity for the investigation of fluorescence enhancement in microbial rhodopsins, which is pursued by combining transient absorption spectroscopy and multiconfigurational quantum chemistry. The results of such an investigation point to an isomerization-blocking electronic effect as the direct cause of instantaneous (subpicosecond) fluorescence enhancement.
在不断发展的光遗传学领域,具有增强荧光的微生物视紫红质的工程化具有重要意义。在这里,我们报告了从蓝藻集胞藻 PCC7120 中发现的两种感觉视紫红质突变体(W76S/Y179F 和 L83Q),它们具有相反的荧光行为。事实上,与野生型蛋白相比,W76S/Y179F 在红光发射方面增加了近 10 倍,而第二个突变体则没有荧光发射。因此,W76S/Y179F 和 L83Q 对为研究微生物视紫红质的荧光增强提供了前所未有的机会,我们通过瞬态吸收光谱和多组态量子化学相结合的方法来研究这一问题。这项研究的结果表明,作为瞬时(亚皮秒)荧光增强的直接原因,是一种阻止异构化的电子效应。