Suppr超能文献

通过电子重编程增强微生物视紫红质的荧光。

Fluorescence Enhancement of a Microbial Rhodopsin via Electronic Reprogramming.

机构信息

Biotechnology, Pharmacy and Chemistry Department , University of Siena , Siena 53100 , Italy.

Chemistry Department , Bowling Green State University , Bowling Green , Ohio 43403 , United States.

出版信息

J Am Chem Soc. 2019 Jan 9;141(1):262-271. doi: 10.1021/jacs.8b09311. Epub 2018 Dec 28.

Abstract

The engineering of microbial rhodopsins with enhanced fluorescence is of great importance in the expanding field of optogenetics. Here we report the discovery of two mutants (W76S/Y179F and L83Q) of a sensory rhodopsin from the cyanobacterium Anabaena PCC7120 with opposite fluorescence behavior. In fact, while W76S/Y179F displays, with respect to the wild-type protein, a nearly 10-fold increase in red-light emission, the second is not emissive. Thus, the W76S/Y179F, L83Q pair offers an unprecedented opportunity for the investigation of fluorescence enhancement in microbial rhodopsins, which is pursued by combining transient absorption spectroscopy and multiconfigurational quantum chemistry. The results of such an investigation point to an isomerization-blocking electronic effect as the direct cause of instantaneous (subpicosecond) fluorescence enhancement.

摘要

在不断发展的光遗传学领域,具有增强荧光的微生物视紫红质的工程化具有重要意义。在这里,我们报告了从蓝藻集胞藻 PCC7120 中发现的两种感觉视紫红质突变体(W76S/Y179F 和 L83Q),它们具有相反的荧光行为。事实上,与野生型蛋白相比,W76S/Y179F 在红光发射方面增加了近 10 倍,而第二个突变体则没有荧光发射。因此,W76S/Y179F 和 L83Q 对为研究微生物视紫红质的荧光增强提供了前所未有的机会,我们通过瞬态吸收光谱和多组态量子化学相结合的方法来研究这一问题。这项研究的结果表明,作为瞬时(亚皮秒)荧光增强的直接原因,是一种阻止异构化的电子效应。

相似文献

1
Fluorescence Enhancement of a Microbial Rhodopsin via Electronic Reprogramming.
J Am Chem Soc. 2019 Jan 9;141(1):262-271. doi: 10.1021/jacs.8b09311. Epub 2018 Dec 28.
3
Crossing the borders: archaeal rhodopsins go bacterial.
Trends Microbiol. 2003 Sep;11(9):405-7. doi: 10.1016/s0966-842x(03)00203-8.
4
Molecular bases for the selection of the chromophore of animal rhodopsins.
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15297-302. doi: 10.1073/pnas.1510262112. Epub 2015 Nov 25.
5
Engineering a carotenoid-binding site in Dokdonia sp. PRO95 Na-translocating rhodopsin by a single amino acid substitution.
Photosynth Res. 2018 May;136(2):161-169. doi: 10.1007/s11120-017-0453-0. Epub 2017 Oct 5.
6
Recent advances in engineering microbial rhodopsins for optogenetics.
Curr Opin Struct Biol. 2015 Aug;33:8-15. doi: 10.1016/j.sbi.2015.05.001. Epub 2015 Jun 1.
7
Biochemical Analysis of Microbial Rhodopsins.
Curr Protoc Microbiol. 2016 May 6;41:1F.4.1-1F.4.18. doi: 10.1002/cpmc.5.
8
Unique Photochemistry Observed in a New Microbial Rhodopsin.
J Phys Chem Lett. 2019 Sep 5;10(17):5117-5121. doi: 10.1021/acs.jpclett.9b01957. Epub 2019 Aug 21.
9
RhoMax: Computational Prediction of Rhodopsin Absorption Maxima Using Geometric Deep Learning.
J Chem Inf Model. 2024 Jun 24;64(12):4630-4639. doi: 10.1021/acs.jcim.4c00467. Epub 2024 Jun 3.
10
Directed evolution of Gloeobacter violaceus rhodopsin spectral properties.
J Mol Biol. 2015 Jan 16;427(1):205-20. doi: 10.1016/j.jmb.2014.06.015. Epub 2014 Jun 28.

引用本文的文献

1
Retinal to Retinal Energy Transfer in a Bistable Microbial Rhodopsin Dimer.
J Am Chem Soc. 2025 Apr 30;147(17):14468-14480. doi: 10.1021/jacs.5c01276. Epub 2025 Apr 17.
2
Archaerhodopsin 3 is an ideal template for the engineering of highly fluorescent optogenetic reporters.
Chem Sci. 2024 Nov 18;16(2):761-774. doi: 10.1039/d4sc05120c. eCollection 2025 Jan 2.
3
Ultrafast terahertz Stark spectroscopy reveals the excited-state dipole moments of retinal in bacteriorhodopsin.
Proc Natl Acad Sci U S A. 2024 Jun 25;121(26):e2319676121. doi: 10.1073/pnas.2319676121. Epub 2024 Jun 20.
4
Voltage Imaging with Engineered Proton-Pumping Rhodopsins: Insights from the Proton Transfer Pathway.
ACS Phys Chem Au. 2023 May 3;3(4):320-333. doi: 10.1021/acsphyschemau.3c00003. eCollection 2023 Jul 26.
6
On the fluorescence enhancement of arch neuronal optogenetic reporters.
Nat Commun. 2022 Oct 28;13(1):6432. doi: 10.1038/s41467-022-33993-4.
7
QuasAr Odyssey: the origin of fluorescence and its voltage sensitivity in microbial rhodopsins.
Nat Commun. 2022 Sep 20;13(1):5501. doi: 10.1038/s41467-022-33084-4.
8
Bidirectional Photochemistry of Antarctic Microbial Rhodopsin: Emerging Trend of Ballistic Photoisomerization from the 13- Resting State.
J Phys Chem Lett. 2022 Sep 1;13(34):8134-8140. doi: 10.1021/acs.jpclett.2c01974. Epub 2022 Aug 24.
9
Fragment Localized Molecular Orbitals.
J Chem Theory Comput. 2022 Aug 9;18(8):4806-4813. doi: 10.1021/acs.jctc.2c00359. Epub 2022 Jul 27.
10
Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering.
Front Chem. 2022 Jun 22;10:879609. doi: 10.3389/fchem.2022.879609. eCollection 2022.

本文引用的文献

1
Strong pH-Dependent Near-Infrared Fluorescence in a Microbial Rhodopsin Reconstituted with a Red-Shifting Retinal Analogue.
J Phys Chem Lett. 2018 Nov 15;9(22):6469-6474. doi: 10.1021/acs.jpclett.8b02780. Epub 2018 Nov 1.
2
Electronic State Mixing Controls the Photoreactivity of a Rhodopsin with all- trans Chromophore Analogues.
J Phys Chem Lett. 2018 Nov 1;9(21):6350-6355. doi: 10.1021/acs.jpclett.8b02550. Epub 2018 Oct 23.
4
A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters.
Nat Chem Biol. 2018 Apr;14(4):352-360. doi: 10.1038/s41589-018-0004-9. Epub 2018 Feb 26.
5
Effect of point mutations on the ultrafast photo-isomerization of Anabaena sensory rhodopsin.
Faraday Discuss. 2018 Apr 17;207(0):55-75. doi: 10.1039/c7fd00200a.
6
Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores.
Chem Rev. 2017 Nov 22;117(22):13502-13565. doi: 10.1021/acs.chemrev.7b00177. Epub 2017 Oct 30.
7
Impact of Electronic State Mixing on the Photoisomerization Time Scale of the Retinal Chromophore.
J Phys Chem Lett. 2017 Oct 19;8(20):5222-5227. doi: 10.1021/acs.jpclett.7b02344. Epub 2017 Oct 11.
8
Fine Tuning of Retinal Photoinduced Decay in Solution.
J Phys Chem Lett. 2017 Sep 21;8(18):4407-4412. doi: 10.1021/acs.jpclett.7b01780. Epub 2017 Sep 5.
9
Reaction dynamics of the chimeric channelrhodopsin C1C2.
Sci Rep. 2017 Aug 3;7(1):7217. doi: 10.1038/s41598-017-07363-w.
10
Directed Evolution of a Bright Near-Infrared Fluorescent Rhodopsin Using a Synthetic Chromophore.
Cell Chem Biol. 2017 Mar 16;24(3):415-425. doi: 10.1016/j.chembiol.2017.02.008. Epub 2017 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验