Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 3, 91058, Erlangen, Germany.
Erlangen Centre for Astroparticle Physics, Department of Physics, Friedrich-Alexander-University Erlangen-Nuremberg, Erwin-Rommel-Str. 1, 91058, Erlangen, Germany.
Int J Comput Assist Radiol Surg. 2019 Jan;14(1):3-10. doi: 10.1007/s11548-018-1872-x. Epub 2018 Oct 22.
Two phase gratings in an X-ray grating interferometers can solve several technical challenges for clinical use of X-ray phase contrast. In this work, we adapt and evaluate this setup design to clinical X-ray sources and detectors in a simulation study.
For a given set of gratings, we optimize the remaining parameter space of a dual-phase grating setup using a numerical wave front simulation. The simulation results are validated with experimentally obtained visibility measurements on a setup with a microfocus tube and a clinical X-ray detector. We then confirm by simulation that the Lau condition for the [Formula: see text] grating also holds for two phase gratings. Furthermore, we use a [Formula: see text] grating with a fixed period to search for periods of matching phase grating configurations.
Simulated and experimental visibilities agree very well. We show that the Lau condition for a dual-phase grating setup requires the interference patterns of the first phase grating to constructively overlay at the second phase grating. Furthermore, a total of three setup variants for given [Formula: see text] periods were designed with the simulation, resulting in visibilities between 4.5 and 9.1%.
Dual-phase gratings can be used and optimized for a medical X-ray source and detector. The obtained visibilities are somewhat lower than for other Talbot-Lau interferometers and are a tradeoff between setup length and spatial resolution (or additional phase stepping, respectively). However, these disadvantage appears minor compared to the overall better photon statistics, and the fact that dual-phase grating setups can be expected to scale to higher X-ray energies.
X 射线光栅干涉仪中的双相位光栅可以解决临床应用 X 射线相位对比的几个技术挑战。在这项工作中,我们在模拟研究中对临床 X 射线源和探测器进行了这种设置设计的调整和评估。
对于给定的光栅集,我们使用数值波前模拟对双相位光栅设置的剩余参数空间进行优化。使用带有微焦点管和临床 X 射线探测器的设置进行实验获得的可见度测量来验证模拟结果。然后,我们通过模拟确认[公式:见文本]光栅的劳条件也适用于双相位光栅。此外,我们使用具有固定周期的[公式:见文本]光栅来搜索匹配相位光栅配置的周期。
模拟和实验的可见度非常吻合。我们表明,双相位光栅设置的劳条件要求第一相位光栅的干涉图案在第二相位光栅处进行建设性叠加。此外,总共为给定的[公式:见文本]周期设计了三种设置变体,其可见度在 4.5 到 9.1%之间。
双相位光栅可用于和优化医疗 X 射线源和探测器。获得的可见度比其他泰伯-劳干涉仪略低,这是设置长度和空间分辨率(或分别为附加的相位步进)之间的折衷。然而,与整体更好的光子统计数据相比,这些缺点显得微不足道,并且可以预期双相位光栅设置可以扩展到更高的 X 射线能量。