Math Department, Claremont Graduate University, Claremont, CA, 91711, USA.
Neurology and Neurological Sciences, Stanford University Medical Center, Palo Alto, CA, USA.
Bull Math Biol. 2019 Sep;81(9):3655-3673. doi: 10.1007/s11538-018-0526-z. Epub 2018 Oct 22.
This paper begins to build a theoretical framework that would enable the pharmaceutical industry to use network complexity measures as a way to identify drug targets. The variability of a betweenness measure for a network node is examined through different methods of network perturbation. Our results indicate a robustness of betweenness centrality in the identification of target genes.
本文旨在构建一个理论框架,使制药行业能够将网络复杂性度量作为一种识别药物靶点的方法。通过不同的网络扰动方法来检验网络节点介数的可变性。研究结果表明,介数中心度在识别靶基因方面具有稳健性。
Bull Math Biol. 2019-9
BMC Syst Biol. 2017-11-22
J Theor Biol. 2018-2-7
J Cell Physiol. 2018-8-26
Comput Biol Chem. 2011-4-30
Bioinformatics. 2010-10-19
An Bras Dermatol. 2025
BMC Genomics. 2024-9-28
Curr Issues Mol Biol. 2023-9-10
Int J Mol Sci. 2023-2-4
Bull Math Biol. 2019-9
Behav Res Methods. 2018-2
Ann Neurol. 2017-4
BMC Bioinformatics. 2016-7-25