Suppr超能文献

DiffSLC:一种用于检测蛋白质-蛋白质相互作用网络中必需蛋白质的图中心性方法。

DiffSLC: A graph centrality method to detect essential proteins of a protein-protein interaction network.

作者信息

Mistry Divya, Wise Roger P, Dickerson Julie A

机构信息

Bioinformatics and Computational Biology, Iowa State University, Ames, Iowa, United States of America.

Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, United States of America.

出版信息

PLoS One. 2017 Nov 9;12(11):e0187091. doi: 10.1371/journal.pone.0187091. eCollection 2017.

Abstract

Identification of central genes and proteins in biomolecular networks provides credible candidates for pathway analysis, functional analysis, and essentiality prediction. The DiffSLC centrality measure predicts central and essential genes and proteins using a protein-protein interaction network. Network centrality measures prioritize nodes and edges based on their importance to the network topology. These measures helped identify critical genes and proteins in biomolecular networks. The proposed centrality measure, DiffSLC, combines the number of interactions of a protein and the gene coexpression values of genes from which those proteins were translated, as a weighting factor to bias the identification of essential proteins in a protein interaction network. Potentially essential proteins with low node degree are promoted through eigenvector centrality. Thus, the gene coexpression values are used in conjunction with the eigenvector of the network's adjacency matrix and edge clustering coefficient to improve essentiality prediction. The outcome of this prediction is shown using three variations: (1) inclusion or exclusion of gene co-expression data, (2) impact of different coexpression measures, and (3) impact of different gene expression data sets. For a total of seven networks, DiffSLC is compared to other centrality measures using Saccharomyces cerevisiae protein interaction networks and gene expression data. Comparisons are also performed for the top ranked proteins against the known essential genes from the Saccharomyces Gene Deletion Project, which show that DiffSLC detects more essential proteins and has a higher area under the ROC curve than other compared methods. This makes DiffSLC a stronger alternative to other centrality methods for detecting essential genes using a protein-protein interaction network that obeys centrality-lethality principle. DiffSLC is implemented using the igraph package in R, and networkx package in Python. The python package can be obtained from git.io/diffslcpy. The R implementation and code to reproduce the analysis is available via git.io/diffslc.

摘要

在生物分子网络中识别核心基因和蛋白质,可为通路分析、功能分析和必要性预测提供可靠的候选对象。DiffSLC中心性度量使用蛋白质-蛋白质相互作用网络来预测核心和必需基因及蛋白质。网络中心性度量根据节点和边对网络拓扑结构的重要性对其进行排序。这些度量有助于识别生物分子网络中的关键基因和蛋白质。所提出的中心性度量DiffSLC,将蛋白质的相互作用数量与那些蛋白质所翻译自的基因的基因共表达值相结合,作为一个加权因子,以在蛋白质相互作用网络中偏向于识别必需蛋白质。具有低节点度的潜在必需蛋白质通过特征向量中心性得到提升。因此,基因共表达值与网络邻接矩阵的特征向量和边聚类系数结合使用,以改进必要性预测。该预测结果通过三种变化形式展示:(1) 基因共表达数据的包含或排除,(2) 不同共表达度量的影响,以及(3) 不同基因表达数据集的影响。对于总共七个网络,使用酿酒酵母蛋白质相互作用网络和基因表达数据,将DiffSLC与其他中心性度量进行比较。还针对排名靠前的蛋白质与来自酿酒酵母基因删除项目的已知必需基因进行了比较,结果表明DiffSLC比其他比较方法检测到更多必需蛋白质,并且在ROC曲线下面积更大。这使得DiffSLC成为使用遵循中心性-致死性原则的蛋白质-蛋白质相互作用网络检测必需基因时,比其他中心性方法更强的替代方法。DiffSLC使用R中的igraph包和Python中的networkx包来实现。Python包可从git.io/diffslcpy获取。R实现以及用于重现分析的代码可通过git.io/diffslc获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1d4/5679606/6038bd1efd2e/pone.0187091.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验