Suppr超能文献

估计心理网络及其准确性:教程论文。

Estimating psychological networks and their accuracy: A tutorial paper.

机构信息

Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.

出版信息

Behav Res Methods. 2018 Feb;50(1):195-212. doi: 10.3758/s13428-017-0862-1.

Abstract

The usage of psychological networks that conceptualize behavior as a complex interplay of psychological and other components has gained increasing popularity in various research fields. While prior publications have tackled the topics of estimating and interpreting such networks, little work has been conducted to check how accurate (i.e., prone to sampling variation) networks are estimated, and how stable (i.e., interpretation remains similar with less observations) inferences from the network structure (such as centrality indices) are. In this tutorial paper, we aim to introduce the reader to this field and tackle the problem of accuracy under sampling variation. We first introduce the current state-of-the-art of network estimation. Second, we provide a rationale why researchers should investigate the accuracy of psychological networks. Third, we describe how bootstrap routines can be used to (A) assess the accuracy of estimated network connections, (B) investigate the stability of centrality indices, and (C) test whether network connections and centrality estimates for different variables differ from each other. We introduce two novel statistical methods: for (B) the correlation stability coefficient, and for (C) the bootstrapped difference test for edge-weights and centrality indices. We conducted and present simulation studies to assess the performance of both methods. Finally, we developed the free R-package bootnet that allows for estimating psychological networks in a generalized framework in addition to the proposed bootstrap methods. We showcase bootnet in a tutorial, accompanied by R syntax, in which we analyze a dataset of 359 women with posttraumatic stress disorder available online.

摘要

将行为概念化为心理和其他成分复杂相互作用的心理网络的使用在各个研究领域中越来越受欢迎。虽然之前的出版物已经解决了估计和解释这种网络的主题,但很少有工作来检查网络估计的准确性(即,容易受到抽样变化的影响),以及从网络结构(例如中心性指数)推断的稳定性(即,随着观察次数的减少,解释仍然相似)。在本教程中,我们旨在向读者介绍这一领域,并解决抽样变化下的准确性问题。我们首先介绍网络估计的最新进展。其次,我们提供了研究人员应该调查心理网络准确性的理由。第三,我们描述了如何使用引导程序例程来(A)评估估计网络连接的准确性,(B)调查中心性指数的稳定性,以及(C)测试不同变量的网络连接和中心性估计是否彼此不同。我们引入了两种新的统计方法:(B)相关稳定性系数,以及(C)用于边缘权重和中心性指数的引导差异检验。我们进行并呈现了模拟研究,以评估这两种方法的性能。最后,我们开发了免费的 R 包 bootnet,它允许在广义框架中估计心理网络,除了提出的引导程序方法之外。我们在一个教程中展示了 bootnet,同时提供了 R 语法,我们在其中分析了一个在线提供的 359 名创伤后应激障碍女性的数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a01/5809547/47acaf540e6b/13428_2017_862_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验