Department of Psychology, University of Notre Dame, Notre Dame, IN, USA.
Behav Res Methods. 2019 Apr;51(2):573-588. doi: 10.3758/s13428-018-1150-4.
Self-report data are common in psychological and survey research. Unfortunately, many of these samples are plagued with careless responses, due to unmotivated participants. The purpose of this study was to propose and evaluate a robust estimation method to detect careless or unmotivated responders, while leveraging item response theory (IRT) person-fit statistics. First, we outlined a general framework for robust estimation specific for IRT models. Subsequently, we conducted a simulation study covering multiple conditions in order to evaluate the performance of the proposed method. Ultimately, we showed that robust maximum marginal likelihood (RMML) estimation significantly improves detection rates for careless responders and reduces bias in item parameters across conditions. Furthermore, we applied our method to a real data set, to illustrate the utility of the proposed method. Our findings suggest that robust estimation coupled with person-fit statistics offers a powerful procedure to identify careless respondents for further review and to provide more accurate item parameter estimates in the presence of careless responses.
自陈式数据在心理和调查研究中很常见。不幸的是,由于参与者缺乏动机,许多这样的样本都存在粗心的回答。本研究旨在提出并评估一种稳健的估计方法,以检测粗心或缺乏动机的应答者,同时利用项目反应理论(IRT)的个人拟合统计。首先,我们概述了一种针对 IRT 模型的稳健估计通用框架。随后,我们进行了一项模拟研究,涵盖了多种情况,以评估所提出方法的性能。最终,我们表明,稳健的最大边缘似然(RMML)估计显著提高了对粗心应答者的检测率,并减少了不同条件下项目参数的偏差。此外,我们将我们的方法应用于一个真实的数据集,以说明所提出的方法的实用性。我们的研究结果表明,稳健估计加上个人拟合统计为识别粗心的应答者以进行进一步审查,并在存在粗心应答的情况下提供更准确的项目参数估计提供了一种强大的程序。