Suppr超能文献

在大规模调查数据中考虑粗心和不充分努力的回应——基于屏幕时间的加权程序的开发、评估和应用。

Accounting for careless and insufficient effort responding in large-scale survey data-development, evaluation, and application of a screen-time-based weighting procedure.

机构信息

IPN-Leibniz Institute for Science and Mathematics Education, Educational Measurement, Olshausenstraße 62, 24118, Kiel, Germany.

Centre for International Student Assessment, Munich, Germany.

出版信息

Behav Res Methods. 2024 Feb;56(2):804-825. doi: 10.3758/s13428-022-02053-6. Epub 2023 Mar 3.

Abstract

Careless and insufficient effort responding (C/IER) poses a major threat to the quality of large-scale survey data. Traditional indicator-based procedures for its detection are limited in that they are only sensitive to specific types of C/IER behavior, such as straight lining or rapid responding, rely on arbitrary threshold settings, and do not allow taking the uncertainty of C/IER classification into account. Overcoming these limitations, we develop a two-step screen-time-based weighting procedure for computer-administered surveys. The procedure allows considering the uncertainty in C/IER identification, is agnostic towards the specific types of C/IE response patterns, and can feasibly be integrated with common analysis workflows for large-scale survey data. In Step 1, we draw on mixture modeling to identify subcomponents of log screen time distributions presumably stemming from C/IER. In Step 2, the analysis model of choice is applied to item response data, with respondents' posterior class probabilities being employed to downweigh response patterns according to their probability of stemming from C/IER. We illustrate the approach on a sample of more than 400,000 respondents being administered 48 scales of the PISA 2018 background questionnaire. We gather supporting validity evidence by investigating relationships between C/IER proportions and screen characteristics that entail higher cognitive burden, such as screen position and text length, relating identified C/IER proportions to other indicators of C/IER as well as by investigating rank-order consistency in C/IER behavior across screens. Finally, in a re-analysis of the PISA 2018 background questionnaire data, we investigate the impact of the C/IER adjustments on country-level comparisons.

摘要

粗心和不充分的响应努力(C/IER)对大规模调查数据的质量构成了重大威胁。传统的基于指标的检测程序存在局限性,因为它们仅对特定类型的 C/IER 行为(如直线回答或快速回答)敏感,依赖于任意的阈值设置,并且不允许考虑 C/IER 分类的不确定性。为了克服这些限制,我们为计算机辅助调查开发了一种基于两步屏幕时间的加权程序。该程序允许考虑 C/IER 识别的不确定性,对 C/IE 响应模式的具体类型不敏感,并且可以与大规模调查数据的常见分析工作流程有效地集成。在步骤 1 中,我们利用混合建模来识别可能源于 C/IER 的日志屏幕时间分布的子组件。在步骤 2 中,应用所选的分析模型对项目响应数据进行分析,根据其源自 C/IER 的概率,使用受访者的后验类别概率对响应模式进行向下加权。我们在一个由超过 400,000 名受访者组成的样本上进行了演示,这些受访者接受了 PISA 2018 背景问卷的 48 个量表的测试。我们通过调查与认知负担较高的屏幕特征(如屏幕位置和文本长度)相关的 C/IER 比例与屏幕特征之间的关系,以及将确定的 C/IER 比例与其他 C/IER 指标以及跨屏幕的 C/IER 行为的等级一致性进行关系收集支持有效性的证据。最后,在对 PISA 2018 背景问卷数据的重新分析中,我们调查了 C/IER 调整对国家层面比较的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a34/10830617/7a8c10c2b288/13428_2022_2053_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验