Martínez-Martínez Antonio J, Tegner Bengt E, McKay Alasdair I, Bukvic Alexander J, Rees Nicholas H, Tizzard Graham J, Coles Simon J, Warren Mark R, Macgregor Stuart A, Weller Andrew S
Chemistry Research Laboratories , University of Oxford , Oxford OX1 3TA , United Kingdom.
Institute of Chemical Sciences , Heriot-Watt University , Edinburgh EH14 4AS , United Kingdom.
J Am Chem Soc. 2018 Nov 7;140(44):14958-14970. doi: 10.1021/jacs.8b09364. Epub 2018 Oct 24.
Solid/gas single-crystal to single-crystal (SC-SC) hydrogenation of appropriate diene precursors forms the corresponding σ-alkane complexes [Rh(CyP(CH) PCy)(L)][BAr] ( n = 3, 4) and [ RhH(CyP(CH)( CH)(CH)PCy)(L)][BAr] ( n = 5, L = norbornane, NBA; cyclooctane, COA). Their structures, as determined by single-crystal X-ray diffraction, have cations exhibiting Rh···H-C σ-interactions which are modulated by both the chelating ligand and the identity of the alkane, while all sit in an octahedral anion microenvironment. These range from chelating η,η Rh···H-C (e.g., [Rh(CyP(CH) PCy)(ηη-NBA)][BAr], n = 3 and 4), through to more weakly bound η Rh···H-C in which C-H activation of the chelate backbone has also occurred (e.g., [ RhH(CyP(CH)( CH)(CH)PCy)(η-COA)][BAr]) and ultimately to systems where the alkane is not ligated with the metal center, but sits encapsulated in the supporting anion microenvironment, [Rh(CyP(CH)PCy)][COA⊂BAr], in which the metal center instead forms two intramolecular agostic η Rh···H-C interactions with the phosphine cyclohexyl groups. CHCl adducts formed by displacement of the η-alkanes in solution ( n = 5; L = NBA, COA), [ RhH(CyP(CH)( CH)(CH)PCy)(κ-ClCHCl)][BAr], are characterized crystallographically. Analyses via periodic DFT, QTAIM, NBO, and NCI calculations, alongside variable temperature solid-state NMR spectroscopy, provide snapshots marking the onset of Rh···alkane interactions along a C-H activation trajectory. These are negligible in [Rh(CyP(CH)PCy)][COA⊂BAr]; in [ RhH(CyP(CH)( CH)(CH)PCy)(η-COA)][BAr], σ → Rh σ-donation is supported by Rh → σ* "pregostic" donation, and in [Rh(CyP(CH) PCy)(ηη-NBA)][BAr] ( n = 2-4), σ-donation dominates, supported by classical Rh(dπ) → σ* π-back-donation. Dispersive interactions with the [BAr] anions and Cy substituents further stabilize the alkanes within the binding pocket.
通过对合适的二烯前体进行固/气单晶到单晶(SC-SC)氢化反应,可形成相应的σ-烷烃配合物[Rh(CyP(CH)PCy)(L)][BAr](n = 3, 4)和[RhH(CyP(CH)(CH)(CH)PCy)(L)][BAr](n = 5,L = 降冰片烷,NBA;环辛烷,COA)。通过单晶X射线衍射确定的它们的结构中,阳离子表现出Rh···H-C σ相互作用,这种相互作用受到螯合配体和烷烃身份的调节,而所有这些都处于八面体阴离子微环境中。这些相互作用范围从螯合的η,η Rh···H-C(例如,[Rh(CyP(CH)PCy)(ηη-NBA)][BAr],n = 3和4),到结合较弱的η Rh···H-C,其中螯合主链的C-H活化也已发生(例如,[RhH(CyP(CH)(CH)(CH)PCy)(η-COA)][BAr]),最终到烷烃不与金属中心配位,而是封装在支撑阴离子微环境中的体系,[Rh(CyP(CH)PCy)][COA⊂BAr],其中金属中心反而与膦环己基形成两个分子内的亲金属η Rh···H-C相互作用。通过溶液中η-烷烃的取代反应形成的CHCl加合物(n = 5;L = NBA,COA),[RhH(CyP(CH)(CH)(CH)PCy)(κ-ClCHCl)][BAr],通过晶体学进行了表征。通过周期性密度泛函理论(DFT)、量子拓扑原子分子理论(QTAIM)、自然键轨道(NBO)和非共价相互作用(NCI)计算,以及变温固态核磁共振光谱分析,提供了沿C-H活化轨迹标记Rh···烷烃相互作用起始的快照。在[Rh(CyP(CH)PCy)][COA⊂BAr]中这些相互作用可忽略不计;在[RhH(CyP(CH)(CH)(CH)PCy)(η-COA)][BAr]中,σ → Rh σ供体作用得到Rh → σ*“预亲金属”供体作用的支持,而在[Rh(CyP(CH)PCy)(ηη-NBA)][BAr](n = 2 - 4)中,σ供体作用占主导,得到经典的Rh(dπ) → σ* π反馈供体作用的支持。与[BAr]阴离子和Cy取代基的色散相互作用进一步稳定了结合口袋内的烷烃。