Suppr超能文献

基于分子σ-烷烃配合物的室温无受体烷烃脱氢反应

Room Temperature Acceptorless Alkane Dehydrogenation from Molecular σ-Alkane Complexes.

作者信息

McKay Alasdair I, Bukvic Alexander J, Tegner Bengt E, Burnage Arron L, Martı Nez-Martı Nez Antonio J, Rees Nicholas H, Macgregor Stuart A, Weller Andrew S

机构信息

Chemistry Research Laboratories, University of Oxford , Oxford OX1 3TA , United Kingdom.

Institute of Chemical Sciences, Heriot Watt University , Edinburgh EH14 4AS , United Kingdom.

出版信息

J Am Chem Soc. 2019 Jul 24;141(29):11700-11712. doi: 10.1021/jacs.9b05577. Epub 2019 Jul 16.

Abstract

The non-oxidative catalytic dehydrogenation of light alkanes via C-H activation is a highly endothermic process that generally requires high temperatures and/or a sacrificial hydrogen acceptor to overcome unfavorable thermodynamics. This is complicated by alkanes being such poor ligands, meaning that binding at metal centers prior to C-H activation is disfavored. We demonstrate that by biasing the pre-equilibrium of alkane binding, by using solid-state molecular organometallic chemistry (SMOM-chem), well-defined isobutane and cyclohexane σ-complexes, [Rh(CyPCHCHPCy)(η:η-(HC)CH(CH)][BAr] and [Rh(CyPCHCHPCy)(η:η-CH)][BAr] can be prepared by simple hydrogenation in a solid/gas single-crystal to single-crystal transformation of precursor alkene complexes. Solid-gas H/D exchange with D occurs at all C-H bonds in both alkane complexes, pointing to a variety of low energy fluxional processes that occur for the bound alkane ligands in the solid-state. These are probed by variable temperature solid-state nuclear magnetic resonance experiments and periodic density functional theory (DFT) calculations. These alkane σ-complexes undergo spontaneous acceptorless dehydrogenation at 298 K to reform the corresponding isobutene and cyclohexadiene complexes, by simple application of vacuum or Ar-flow to remove H. These processes can be followed temporally, and modeled using classical chemical, or Johnson-Mehl-Avrami-Kologoromov, kinetics. When per-deuteration is coupled with dehydrogenation of cyclohexane to cyclohexadiene, this allows for two successive KIEs to be determined [/ = 3.6(5) and 10.8(6)], showing that the rate-determining steps involve C-H activation. Periodic DFT calculations predict overall barriers of 20.6 and 24.4 kcal/mol for the two dehydrogenation steps, in good agreement with the values determined experimentally. The calculations also identify significant C-H bond elongation in both rate-limiting transition states and suggest that the large / for the second dehydrogenation results from a pre-equilibrium involving C-H oxidative cleavage and a subsequent rate-limiting β-H transfer step.

摘要

通过C-H活化实现轻质烷烃的非氧化催化脱氢是一个高度吸热的过程,通常需要高温和/或牺牲性氢受体来克服不利的热力学因素。烷烃作为如此差的配体使情况变得复杂,这意味着在C-H活化之前在金属中心的结合是不利的。我们证明,通过使用固态分子有机金属化学(SMOM-chem)来偏向烷烃结合的预平衡,可以通过前驱体烯烃配合物的固/气单晶到单晶转变中的简单氢化反应制备定义明确的异丁烷和环己烷σ-配合物,即[Rh(CyPCHCHPCy)(η:η-(HC)CH(CH)][BAr]和[Rh(CyPCHCHPCy)(η:η-CH)][BAr]。与D的固-气H/D交换发生在两种烷烃配合物的所有C-H键上,这表明固态中结合的烷烃配体会发生各种低能量的通量过程。通过变温固态核磁共振实验和周期性密度泛函理论(DFT)计算对这些过程进行了探究。这些烷烃σ-配合物在298 K下通过简单地施加真空或Ar流以除去H而发生自发的无受体脱氢反应,以重新形成相应的异丁烯和环己二烯配合物。这些过程可以随时间跟踪,并使用经典化学动力学或约翰逊-梅hl-阿夫拉米-科洛戈罗莫夫动力学进行建模。当全氘代与环己烷脱氢生成环己二烯相结合时,这使得可以确定两个连续的动力学同位素效应(KIEs)[/ = 3.6(5)和10.8(6)],表明速率决定步骤涉及C-H活化。周期性DFT计算预测两个脱氢步骤的总势垒分别为20.6和24.4 kcal/mol,与实验测定的值高度吻合。计算还确定了两个限速过渡态中显著的C-H键伸长,并表明第二次脱氢的大KIE是由涉及C-H氧化裂解和随后限速β-H转移步骤的预平衡导致的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验