Bukvic Alexander J, Burnage Arron L, Tizzard Graham J, Martínez-Martínez Antonio J, McKay Alasdair I, Rees Nicholas H, Tegner Bengt E, Krämer Tobias, Fish Heather, Warren Mark R, Coles Simon J, Macgregor Stuart A, Weller Andrew S
Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
Department of Chemistry, Chemistry Research Laboratories, University of Oxford, Oxford OX1 3TA, U.K.
J Am Chem Soc. 2021 Apr 7;143(13):5106-5120. doi: 10.1021/jacs.1c00738. Epub 2021 Mar 26.
Using solid-state molecular organometallic (SMOM) techniques, in particular solid/gas single-crystal to single-crystal reactivity, a series of σ-alkane complexes of the general formula [Rh(CyPCHCHPCy)(η:η-alkane)][BAr] have been prepared (alkane = propane, 2-methylbutane, hexane, 3-methylpentane; Ar = 3,5-(CF)CH). These new complexes have been characterized using single crystal X-ray diffraction, solid-state NMR spectroscopy and DFT computational techniques and present a variety of Rh(I)···H-C binding motifs at the metal coordination site: 1,2-η:η (2-methylbutane), 1,3-η:η (propane), 2,4-η:η (hexane), and 1,4-η:η (3-methylpentane). For the linear alkanes propane and hexane, some additional Rh(I)···H-C interactions with the geminal C-H bonds are also evident. The stability of these complexes with respect to alkane loss in the solid state varies with the identity of the alkane: from propane that decomposes rapidly at 295 K to 2-methylbutane that is stable and instead undergoes an acceptorless dehydrogenation to form a bound alkene complex. In each case the alkane sits in a binding pocket defined by the {Rh(CyPCHCHPCy)} fragment and the surrounding array of [BAr] anions. For the propane complex, a small alkane binding energy, driven in part by a lack of stabilizing short contacts with the surrounding anions, correlates with the fleeting stability of this species. 2-Methylbutane forms more short contacts within the binding pocket, and as a result the complex is considerably more stable. However, the complex of the larger 3-methylpentane ligand shows lower stability. Empirically, there therefore appears to be an optimal fit between the size and shape of the alkane and overall stability. Such observations are related to guest/host interactions in solution supramolecular chemistry and the holistic role of 1°, 2°, and 3° environments in metalloenzymes.
利用固态分子有机金属(SMOM)技术,特别是固/气单晶到单晶反应性,制备了一系列通式为[Rh(CyPCHCHPCy)(η:η-烷烃)][BAr]的σ-烷烃配合物(烷烃 = 丙烷、2-甲基丁烷、己烷、3-甲基戊烷;Ar = 3,5-(CF)CH)。这些新配合物已通过单晶X射线衍射、固态核磁共振光谱和密度泛函理论(DFT)计算技术进行了表征,并在金属配位位点呈现出多种Rh(I)···H-C键合模式:1,2-η:η(2-甲基丁烷)、1,3-η:η(丙烷)、2,4-η:η(己烷)和1,4-η:η(3-甲基戊烷)。对于直链烷烃丙烷和己烷,一些与偕二C-H键的额外Rh(I)···H-C相互作用也很明显。这些配合物在固态下相对于烷烃损失的稳定性随烷烃的种类而变化:从在295 K时迅速分解的丙烷到稳定的2-甲基丁烷,后者反而进行无受体脱氢反应形成键合的烯烃配合物。在每种情况下,烷烃都位于由{Rh(CyPCHCHPCy)}片段和周围的[BAr]阴离子阵列所定义的结合口袋中。对于丙烷配合物,部分由于与周围阴离子缺乏稳定的短程接触而导致的较小的烷烃结合能,与该物种的短暂稳定性相关。2-甲基丁烷在结合口袋内形成更多的短程接触,因此该配合物稳定性显著更高。然而,较大的3-甲基戊烷配体的配合物显示出较低的稳定性。因此,根据经验,烷烃的大小和形状与整体稳定性之间似乎存在最佳匹配。这些观察结果与溶液超分子化学中的客体/主体相互作用以及金属酶中一级、二级和三级环境的整体作用有关。