Department of Chemical and Biomolecular Engineering , Clarkson University , Potsdam , New York 13699 , United States.
Nano Lett. 2018 Nov 14;18(11):7400-7406. doi: 10.1021/acs.nanolett.8b03844. Epub 2018 Oct 29.
Optical forces have enabled various nanomanipulation in microfluidics such as optical trapping, sorting, and transporting of nanoparticles (NPs), but the manipulation is usually specific with a certain optical field. Tightly focused Gaussian beams can trap NPs but not sort them; moderately focused Gaussian beams allow sorting microparticles in a flow but not NPs; quasi-Bessel beams can sort NPs in a flow but cannot control their positions due to low trapping stiffness. All these methods rely on the axial variation of laser intensity. Here we show that multifunctional and tunable optofluidic potential wells can be created for nanomanipulation by synchronizing optical phase gradient force with fluid drag force. We demonstrate controlled trapping and transporting of 150 nm Ag NPs over 10 μm and sorting of 80 and 100 nm Au NPs using optical line traps with tunable phase gradients in experiments. Our simulations further predict that simultaneous sorting and trapping of sub-50 nm Au NPs can be achieved with a sorting resolution of 1 nm using optimized optical fields. Our method provides great freedom and flexibility for nanomanipulation in optofluidics with potential applications in nanophotonics and biomedicine.
光学力在微流控中实现了各种纳米操作,如光阱、纳米粒子(NPs)的分选和输运,但这种操作通常是特定于特定的光场的。强聚焦高斯光束可以捕获 NPs,但不能对其进行分选;适度聚焦的高斯光束可以在流动中对微粒子进行分选,但不能对 NPs 进行分选;准贝塞尔光束可以在流动中对 NPs 进行分选,但由于捕获刚度低,无法控制它们的位置。所有这些方法都依赖于激光强度的轴向变化。在这里,我们通过将光学相位梯度力与流体阻力同步,展示了多功能和可调谐的光流控势阱可用于纳米操作。我们通过实验演示了使用可调谐相位梯度的光学线阱对 150nm Ag NPs 的可控捕获和输运,以及对 80nm 和 100nm Au NPs 的分选。我们的模拟进一步预测,使用优化的光学场,可以实现同时对亚 50nm Au NPs 的分选和捕获,分选分辨率为 1nm。我们的方法为光流控中的纳米操作提供了极大的自由度和灵活性,在纳米光子学和生物医学中有潜在的应用。