Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
Nano Lett. 2020 Apr 8;20(4):2778-2783. doi: 10.1021/acs.nanolett.0c00443. Epub 2020 Mar 10.
Micromanipulation by optical tweezers mainly relies on the trapping force derived from the intensity gradient of light. Here we show that the synergy of intensity, phase, and polarization in structured light allows versatile optical manipulation of nanostructures. When a metal nanoparticle is confined by a linearly polarized laser field, the sign of optical force depends on the particle shape and the laser intensity, phase, and polarization profiles. By tuning these parameters in optical line traps, optical trapping, transporting, and sorting of silver nanostructures have been demonstrated. These findings inspired us to control the motion of nanostructures with designed intensity, phase, and polarization of light using holographic optical tweezers with advanced beam shaping techniques. This work provides a new perspective on active colloidal nanomanipulation in fully controlled optical landscapes, which largely expands the existing optical manipulation toolbox.
光镊的微操控主要依赖于光强梯度产生的捕获力。在这里,我们展示了结构光的强度、相位和偏振的协同作用可以实现对纳米结构的多种光学操控。当金属纳米颗粒被线偏振激光场限制时,光力的符号取决于颗粒的形状以及激光的强度、相位和偏振分布。通过在光线阱中调整这些参数,我们演示了对银纳米结构的光学捕获、输运和分拣。这些发现启发我们使用具有先进光束整形技术的全息光镊,通过设计光的强度、相位和偏振来控制纳米结构的运动。这项工作为在完全可控的光学环境中主动胶体纳米操控提供了新的视角,极大地扩展了现有的光学操控工具包。