Suppr超能文献

缺失卒中严重程度数据对医院缺血性卒中死亡率剖析准确性的影响。

Impact of Missing Stroke Severity Data on the Accuracy of Hospital Ischemic Stroke Mortality Profiling.

作者信息

Thompson Michael P, Luo Zhehui, Gardiner Joseph, Burke James F, Nickles Adrienne, Reeves Mathew J

机构信息

Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI (M.P.T., Z.L., J.G., M.J.R.).

Department of Cardiac Surgery, University of Michigan Medical School, Ann Arbor, MI (M.P.T.).

出版信息

Circ Cardiovasc Qual Outcomes. 2018 Oct;11(10):e004951. doi: 10.1161/CIRCOUTCOMES.118.004951.

Abstract

BACKGROUND

The Centers for Medicare and Medicaid Services have proposed 30-day ischemic stroke risk-standardized mortality rates that include adjustment for stroke severity using the National Institute of Health Stroke Scale (NIHSS), which is often undocumented. We used simulations to quantify the effect of missing NIHSS data on the accuracy of hospital-level ischemic stroke risk-standardized mortality rate profiling for 100 hypothetical hospitals with different case volumes.

METHODS AND RESULTS

We generated simulated data sets of patients with NIHSS scores and other predictors of 30-day mortality based on empirical analysis of data from 7654 patients with ischemic stroke in the Michigan Stroke Registry. We assigned and rank-ordered a true (known) 30-day mortality rate to each hospital in the simulated data sets of N=100 hospitals with either low (100 patients with stroke), medium (300), or high (500) case volumes. We then estimated and rank-ordered 30-day risk-standardized mortality rates for the N=100 hospitals in each simulated data set using hierarchical logistic regression models. In each data set, we systematically varied the rate of missing NIHSS data and whether missing NIHSS data was independent (missing completely at random) or dependent (missing not at random) on the NIHSS score. With no missing NIHSS data, the Spearman correlation between the true hospital performance rank order assigned during data set generation and the estimated 30-day risk-standardized mortality rate rank order was 0.72, 0.88, and 0.91 in low, medium, and high volume hospitals, respectively. However, this fell to as low as 0.50, 0.71, and 0.79 as missing NIHSS data reached 70%.

CONCLUSIONS

Missing NIHSS data had substantial detrimental effects on the accuracy of profiling of ischemic stroke mortality, especially in lower volume hospitals. Even with complete NIHSS documentation, significant limitations in ischemic stroke mortality profiling remain.

摘要

背景

医疗保险和医疗补助服务中心提出了30天缺血性中风风险标准化死亡率,其中包括使用美国国立卫生研究院中风量表(NIHSS)对中风严重程度进行调整,但该量表的数据往往未记录在案。我们通过模拟来量化缺失NIHSS数据对100家不同病例量的假设医院的医院层面缺血性中风风险标准化死亡率分析准确性的影响。

方法与结果

我们基于对密歇根中风登记处7654例缺血性中风患者数据的实证分析,生成了具有NIHSS评分和其他30天死亡率预测因素的患者模拟数据集。我们为N = 100家医院的模拟数据集中的每家医院分配并按顺序排列了真实(已知)的30天死亡率,这些医院的病例量分别为低(100例中风患者)、中(300例)或高(500例)。然后,我们使用分层逻辑回归模型估计并按顺序排列每个模拟数据集中N = 100家医院的30天风险标准化死亡率。在每个数据集中,我们系统地改变缺失NIHSS数据的比例,以及缺失的NIHSS数据是独立的(完全随机缺失)还是依赖的(非随机缺失)于NIHSS评分。在没有缺失NIHSS数据的情况下,在低、中、高病例量医院中,数据集生成期间分配的真实医院表现排名顺序与估计的30天风险标准化死亡率排名顺序之间的Spearman相关性分别为0.72、0.88和0.91。然而,当缺失NIHSS数据达到70%时,这一相关性降至低至0.50、0.71和0.79。

结论

缺失NIHSS数据对缺血性中风死亡率分析的准确性有重大不利影响,尤其是在病例量较低的医院。即使有完整的NIHSS记录,缺血性中风死亡率分析仍存在重大局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验