Suppr超能文献

量化急性卒中登记中记录的美国国立卫生研究院卒中量表数据中的选择偏倚。

Quantifying Selection Bias in National Institute of Health Stroke Scale Data Documented in an Acute Stroke Registry.

作者信息

Thompson Michael P, Luo Zhehui, Gardiner Joseph, Burke James F, Nickles Adrienne, Reeves Mathew J

机构信息

From the Department of Epidemiology and Biostatistics, Michigan State University, Lansing (M.P.T., Z.L., J.G., M.J.R.); Department of Neurology, University of Michigan, Ann Arbor (J.M.B.); and Chronic Disease Epidemiology Section, Michigan Department of Health and Human Services, Lansing (A.N.).

出版信息

Circ Cardiovasc Qual Outcomes. 2016 May;9(3):286-93. doi: 10.1161/CIRCOUTCOMES.115.002352. Epub 2016 May 10.

Abstract

BACKGROUND

As a measure of stroke severity, the National Institutes of Health Stroke Scale (NIHSS) is an important predictor of patient- and hospital-level outcomes, yet is often undocumented. The purpose of this study is to quantify and correct for potential selection bias in observed NIHSS data.

METHODS AND RESULTS

Data were obtained from the Michigan Stroke Registry and included 10 262 patients with ischemic stroke aged ≥65 years discharged from 23 hospitals from 2009 to 2012, of which 74.6% of patients had documented NIHSS. We estimated models predicting NIHSS documentation and NIHSS score and used the Heckman selection model to estimate a correlation coefficient (ρ) between the 2 model error terms, which quantifies the degree of selection bias in the documentation of NIHSS. The Heckman model found modest, but significant, selection bias (ρ=0.19; 95% confidence interval: 0.09, 0.29; P<0.001), indicating that because NIHSS score increased (ie, strokes were more severe), the probability of documentation also increased. We also estimated a selection bias-corrected population mean NIHSS score of 4.8, which was substantially lower than the observed mean NIHSS score of 7.4. Evidence of selection bias was also identified using hospital-level analysis, where increased NIHSS documentation was correlated with lower mean NIHSS scores (r=-0.39; P<0.001).

CONCLUSIONS

We demonstrate modest, but important, selection bias in documented NIHSS data, which are missing more often in patients with less severe stroke. The population mean NIHSS score was overestimated by >2 points, which could significantly alter the risk profile of hospitals treating patients with ischemic stroke and subsequent hospital risk-adjusted outcomes.

摘要

背景

作为评估卒中严重程度的指标,美国国立卫生研究院卒中量表(NIHSS)是患者和医院层面预后的重要预测指标,但该指标常常未被记录。本研究旨在量化并校正观察到的NIHSS数据中潜在的选择偏倚。

方法与结果

数据来自密歇根卒中登记处,纳入了2009年至2012年从23家医院出院的10262例年龄≥65岁的缺血性卒中患者,其中74.6%的患者记录了NIHSS。我们估计了预测NIHSS记录情况和NIHSS评分的模型,并使用赫克曼选择模型估计两个模型误差项之间的相关系数(ρ),该系数量化了NIHSS记录中的选择偏倚程度。赫克曼模型发现存在适度但显著的选择偏倚(ρ=0.19;95%置信区间:0.09,0.29;P<0.001),这表明随着NIHSS评分升高(即卒中更严重),记录的概率也增加。我们还估计了校正选择偏倚后的总体平均NIHSS评分为4.8,这显著低于观察到的平均NIHSS评分7.4。使用医院层面分析也发现了选择偏倚的证据,即NIHSS记录增加与较低的平均NIHSS评分相关(r=-0.39;P<0.001)。

结论

我们证明了记录的NIHSS数据中存在适度但重要的选择偏倚,在卒中不太严重的患者中该数据缺失更为常见。总体平均NIHSS评分被高估了2分以上,这可能会显著改变治疗缺血性卒中患者的医院的风险概况以及随后的医院风险调整后的预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验