Suppr超能文献

定义生理常氧,以提高细胞生理学向动物模型和人类的转化。

Defining Physiological Normoxia for Improved Translation of Cell Physiology to Animal Models and Humans.

机构信息

King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom.

出版信息

Physiol Rev. 2019 Jan 1;99(1):161-234. doi: 10.1152/physrev.00041.2017.

Abstract

The extensive oxygen gradient between the air we breathe (Po ~21 kPa) and its ultimate distribution within mitochondria (as low as ~0.5-1 kPa) is testament to the efforts expended in limiting its inherent toxicity. It has long been recognized that cell culture undertaken under room air conditions falls short of replicating this protection in vitro. Despite this, difficulty in accurately determining the appropriate O levels in which to culture cells, coupled with a lack of the technology to replicate and maintain a physiological O environment in vitro, has hindered addressing this issue thus far. In this review, we aim to address the current understanding of tissue Po distribution in vivo and summarize the attempts made to replicate these conditions in vitro. The state-of-the-art techniques employed to accurately determine O levels, as well as the issues associated with reproducing physiological O levels in vitro, are also critically reviewed. We aim to provide the framework for researchers to undertake cell culture under O levels relevant to specific tissues and organs. We envisage that this review will facilitate a paradigm shift, enabling translation of findings under physiological conditions in vitro to disease pathology and the design of novel therapeutics.

摘要

我们呼吸的空气中的氧气浓度(Po21kPa)与线粒体中氧气的最终分布(低至 0.5-1kPa)之间存在巨大的浓度梯度,这证明了为限制氧气固有毒性所付出的努力。长期以来,人们一直认为在常氧条件下进行细胞培养无法在体外复制这种保护作用。尽管如此,准确确定细胞培养适当氧水平的困难,以及缺乏复制和维持体外生理氧环境的技术,迄今为止一直阻碍着人们解决这个问题。在这篇综述中,我们旨在阐述组织中 Po 分布的当前认识,并总结在体外复制这些条件的尝试。本文还批判性地回顾了用于准确确定氧水平的最先进技术,以及在体外复制生理氧水平所涉及的问题。我们的目标是为研究人员提供在与特定组织和器官相关的氧水平下进行细胞培养的框架。我们设想,这篇综述将促成一种范式转变,使人们能够将体外生理条件下的研究结果转化为疾病病理学,并设计新的治疗方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验