Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
Nature. 2018 Nov;563(7732):514-521. doi: 10.1038/s41586-018-0650-9. Epub 2018 Oct 24.
During both embryonic development and adult tissue regeneration, changes in chromatin structure driven by master transcription factors lead to stimulus-responsive transcriptional programs. A thorough understanding of how stem cells in the skeleton interpret mechanical stimuli and enact regeneration would shed light on how forces are transduced to the nucleus in regenerative processes. Here we develop a genetically dissectible mouse model of mandibular distraction osteogenesis-which is a process that is used in humans to correct an undersized lower jaw that involves surgically separating the jaw bone, which elicits new bone growth in the gap. We use this model to show that regions of newly formed bone are clonally derived from stem cells that reside in the skeleton. Using chromatin and transcriptional profiling, we show that these stem-cell populations gain activity within the focal adhesion kinase (FAK) signalling pathway, and that inhibiting FAK abolishes new bone formation. Mechanotransduction via FAK in skeletal stem cells during distraction activates a gene-regulatory program and retrotransposons that are normally active in primitive neural crest cells, from which skeletal stem cells arise during development. This reversion to a developmental state underlies the robust tissue growth that facilitates stem-cell-based regeneration of adult skeletal tissue.
在胚胎发育和成人组织再生过程中,由主转录因子驱动的染色质结构变化导致了对刺激有反应的转录程序。深入了解骨骼中的干细胞如何解释机械刺激并进行再生,将揭示在再生过程中力是如何传递到核中的。在这里,我们开发了一种可遗传解析的下颌骨牵引成骨的小鼠模型——这是一种在人类中用于矫正下颌过小的过程,涉及到手术分离颌骨,从而在间隙中引发新的骨生长。我们利用该模型表明,新形成骨的区域是由存在于骨骼中的干细胞克隆衍生而来的。通过染色质和转录谱分析,我们表明这些干细胞群体在粘着斑激酶 (FAK) 信号通路中获得活性,并且抑制 FAK 会阻止新骨形成。在牵引过程中,骨骼干细胞中的机械转导通过粘着斑激酶 (FAK) 激活了一个基因调控程序和逆转录转座子,这些程序和转座子在发育过程中产生骨骼干细胞的原始神经嵴细胞中通常是活跃的。这种向发育状态的逆转是促进基于干细胞的成年骨骼组织再生的强大组织生长的基础。