Suppr超能文献

影响美国大城市犯罪时间模式的因素:预测分析视角。

Factors influencing temporal patterns in crime in a large American city: A predictive analytics perspective.

机构信息

Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America.

VACCINE Department of Homeland Security Center of Excellence, Purdue University, West Lafayette, IN, United States of America.

出版信息

PLoS One. 2018 Oct 24;13(10):e0205151. doi: 10.1371/journal.pone.0205151. eCollection 2018.

Abstract

BACKGROUND

Improving the accuracy and precision of predictive analytics for temporal trends in crime necessitates a good understanding of the how exogenous variables, such as weather and holidays, impact crime.

METHODS

We examine 5.7 million reported incidents of crime that occurred in the City of Chicago between 2001 to 2014. Using linear regression methods, we examine the temporal relationship of the crime incidents to weather, holidays, school vacations, day-of-week, and paydays. We correct the data for dominant sources of auto-correlation, and we then employ bootstrap methods for model selection. Importantly for the aspect of predictive analytics, we validate the predictive capabilities of our model on an independent data set; model validation has been almost universally overlooked in the literature on this subject.

RESULTS

We find significant dependence of crime on time of year, holidays, and weekdays. We find that dependence of aggressive crime on temperature depends on the hour of the day, and whether it takes place outside or inside. In addition, unusually hot/cold days are associated with unusual fluctuations upwards/downwards in crimes of aggression, respectively, regardless of the time of year.

CONCLUSIONS

Including holidays, festivals, and school holiday periods in crime predictive analytics software can improve the accuracy and precision of temporal predictions. We also find that including forecasts for temperature may significantly improve short term crime forecasts for the temporal trends in many types of crime, particularly aggressive crime.

摘要

背景

提高预测犯罪时间趋势的准确性和精密度需要很好地理解外生变量(如天气和节假日)如何影响犯罪。

方法

我们研究了 2001 年至 2014 年间发生在芝加哥市的 570 万起犯罪报告事件。我们使用线性回归方法研究犯罪事件与天气、节假日、学校假期、星期几和发薪日之间的时间关系。我们对数据进行了主要自相关源的校正,并使用自举方法进行模型选择。对于预测分析的方面,我们在独立数据集上验证了我们模型的预测能力;在关于这个主题的文献中,模型验证几乎被普遍忽视。

结果

我们发现犯罪与一年中的时间、节假日和工作日有显著的依赖性。我们发现,攻击性犯罪对温度的依赖取决于一天中的时间,以及它是发生在室外还是室内。此外,异常炎热/寒冷的天气与攻击性犯罪的异常波动有关,分别与一年中的时间无关。

结论

在犯罪预测分析软件中纳入节假日、节日和学校假期可以提高时间预测的准确性和精密度。我们还发现,包括温度预测可以显著提高许多类型犯罪的短期犯罪预测的准确性,特别是攻击性犯罪。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验