Suppr超能文献

城市社区区域网络中犯罪活动的动态

Dynamics of crime activities in the network of city community areas.

作者信息

Niu Xiang, Elsisy Amr, Derzsy Noemi, Szymanski Boleslaw K

机构信息

Network Science and Technology Center & Department of Computer Science, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY USA.

Network Science and Technology Center & Department of Physics, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY USA.

出版信息

Appl Netw Sci. 2019;4(1):127. doi: 10.1007/s41109-019-0239-8. Epub 2019 Dec 26.

Abstract

Understanding criminal activities, their structure and dynamics are fundamental for designing tools for crime prediction that can also guide crime prevention. Here, we study crimes committed in city community areas based on police crime reports and demographic data for the City of Chicago collected over 16 consecutive years. Our goal is to understand how the network of city community areas shapes dynamics of criminal offenses and demographic characteristics of their inhabitants. Our results reveal the presence of criminal hot-spots and expose the dynamic nature of criminal activities. We identify the most influential features for forecasting the per capita crime rate in each community. Our results indicate that city community crime is driven by spatio-temporal dynamics since the number of crimes committed in the past among the spatial neighbors of each community area and in the community itself are the most important features in our predictive models. Moreover, certain urban characteristics appear to act as triggers for the spatial spreading of criminal activities. Using the k-Means clustering algorithm, we obtained three clearly separated clusters of community areas, each with different levels of crimes and unique demographic characteristics of the district's inhabitants. Further, we demonstrate that crime predictive models incorporating both demographic characteristics of a community and its crime rate perform better than models relying only on one type of features. We develop predictive algorithms to forecast the number of future crimes in city community areas over the periods of one-month and one-year using varying sets of features. For one-month predictions using just the number of prior incidents as a feature, the critical length of historical data, , of 12 months arises. Using more than months ensures high accuracy of prediction, while using fewer months negatively impacts prediction quality. Using features based on demographic characteristics of the district's inhabitants weakens this impact somewhat. We also forecast the number of crimes in each community area in the given year. Then, we study in which community area and over what period an increase in crime reduction funding in this area will yield the largest reduction of the crime in the entire city. Finally, we study and compare the performance of various supervised machine learning algorithms classifying reported crime incidents into the correct crime category. Using the temporal patterns of various crime categories improves the classification accuracy. The methodologies introduced here are general and can be applied to other cities for which data about criminal activities and demographics are available.

摘要

了解犯罪活动、其结构和动态对于设计犯罪预测工具至关重要,这些工具还可指导犯罪预防工作。在此,我们基于连续16年收集的芝加哥市警方犯罪报告和人口数据,研究城市社区区域内发生的犯罪。我们的目标是了解城市社区区域网络如何塑造刑事犯罪动态及其居民的人口特征。我们的研究结果揭示了犯罪热点的存在,并揭示了犯罪活动的动态性质。我们确定了预测每个社区人均犯罪率的最具影响力的特征。我们的结果表明,城市社区犯罪受时空动态驱动,因为每个社区区域的空间邻域以及该社区本身过去发生的犯罪数量是我们预测模型中最重要的特征。此外,某些城市特征似乎是犯罪活动空间扩散 的触发因素。使用k均值聚类算法,我们获得了三个明显分开的社区区域集群,每个集群的犯罪水平不同,且该地区居民具有独特的人口特征。此外,我们证明,结合社区人口特征及其犯罪率的犯罪预测模型比仅依赖一种特征类型的模型表现更好。我们开发了预测算法,使用不同的特征集来预测城市社区区域未来一个月和一年期间的犯罪数量。对于仅将先前事件数量作为特征的一个月预测,出现了12个月的关键历史数据长度 。使用超过 个月可确保预测的高精度,而使用较少月份则会对预测质量产生负面影响。使用基于该地区居民人口特征的特征会在一定程度上减弱这种影响。我们还预测了给定年份每个社区区域的犯罪数量。然后,我们研究在哪个社区区域以及在什么时间段内增加该地区的犯罪减少资金将使整个城市的犯罪减少最多。最后,我们研究并比较了各种监督机器学习算法将报告的犯罪事件分类到正确犯罪类别的性能。使用各种犯罪类别的时间模式可提高分类准确性。这里介绍的方法具有通用性,可应用于其他有犯罪活动和人口统计数据的城市。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd3/10617002/28d03d3f2e8d/41109_2019_239_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验