Suppr超能文献

大分子科学的四十年:对合成聚合物和材料科学挑战的反思。

The Past 40 Years of Macromolecular Sciences: Reflections on Challenges in Synthetic Polymer and Material Science.

机构信息

Institute of Chemistry, Faculty of Natural Sciences II, Martin-Luther University Halle-Wittenberg, von Danckelmann-Platz 4, D-06120, Halle (Saale), Germany.

出版信息

Macromol Rapid Commun. 2019 Jan;40(1):e1800610. doi: 10.1002/marc.201800610. Epub 2018 Oct 24.

Abstract

Technology and science are often successful in discontinuities ("disruptive innovations" or "leapfrogging"), in turn allowing true, big societal development by entire changes in technology rather than by minuscule stepwise improvements. Examples are the emergence of modern computer science by inventing the field-effect transistor rather than further fine-tuning the "Röhrentransistor"; the development of (organic) light-emitting diodes in advance of the "Gasglühstrumpf"; CRISPR/Cas exceeding any previous genetic method or Ziegler-Natta polymerization enabling stereoregular polypropylene (PP) and high-density polyethylene (HDPE) in advance of free-radical polymerization. Where may the frogs in polymer science in the future "jump" to? Contemplating past achievements in (synthetic) polymer science, such as living polymerization, "click" chemistry, supramolecular chemistry, the potentially "leaping" areas of self-healing and (bio)degradable materials, amyloids, and biomaterials are reflected upon.

摘要

技术和科学在不连续(“颠覆性创新”或“跨越性进步”)中往往取得成功,从而通过整个技术的彻底变革而不是微小的逐步改进来实现真正的、重大的社会发展。例如,通过发明场效应晶体管而不是进一步微调“Röhrentransistor”,从而出现了现代计算机科学;在“Gasglühstrumpf”之前发展(有机)发光二极管;CRISPR/Cas 超越了以往的任何基因方法,Ziegler-Natta 聚合使立体规整聚丙烯(PP)和高密度聚乙烯(HDPE)得以在自由基聚合之前实现。未来聚合物科学中的“青蛙”可能会“跳”向何处?考虑到(合成)聚合物科学过去的成就,如活性聚合、“点击”化学、超分子化学、具有潜在“跨越”性的自修复和(生物)可降解材料、淀粉样蛋白和生物材料等领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验