Suppr超能文献

通过 AAV-CRISPR/Cas9 对 的体细胞基因编辑改变了小鼠和猕猴的视网膜结构和功能。

Somatic Gene Editing of by AAV-CRISPR/Cas9 Alters Retinal Structure and Function in Mouse and Macaque.

机构信息

1 Department of Ophthalmology, University of Florida, Gainesville, Florida.

2 Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama.

出版信息

Hum Gene Ther. 2019 May;30(5):571-589. doi: 10.1089/hum.2018.193. Epub 2018 Dec 20.

Abstract

Mutations in , the gene encoding retinal guanylate cyclase-1 (retGC1), are the leading cause of autosomal dominant cone-rod dystrophy (CORD6). Significant progress toward clinical application of gene replacement therapy for Leber congenital amaurosis (LCA) due to recessive mutations in (LCA1) has been made, but a different approach is needed to treat CORD6 where gain of function mutations cause dysfunction and dystrophy. The CRISPR/Cas9 gene editing system efficiently disrupts genes at desired loci, enabling complete gene knockout or homology directed repair. Here, adeno-associated virus (AAV)-delivered CRISPR/Cas9 was used specifically to edit/disrupt this gene's early coding sequence in mouse and macaque photoreceptors , thereby knocking out retGC1 expression and demonstrably altering retinal function and structure. Neither preexisting nor induced Cas9-specific T-cell responses resulted in ocular inflammation in macaques, nor did it limit editing. The results show, for the first time, the ability to perform somatic gene editing in primates using AAV-CRISPR/Cas9 and demonstrate the viability this approach for treating inherited retinal diseases in general and CORD6 in particular.

摘要

突变 ,编码视网膜鸟苷酸环化酶-1(retGC1)的基因,是常染色体显性圆锥体-杆体营养不良(CORD6)的主要原因。由于 (LCA1)隐性突变导致莱伯先天性黑矇(LCA)的基因替代治疗已取得显著进展,但需要采用不同的方法来治疗 CORD6,因为功能获得性突变会导致功能障碍和营养不良。CRISPR/Cas9 基因编辑系统可在所需基因座高效地破坏基因,从而实现完全基因敲除或同源定向修复。在此,腺相关病毒(AAV)递送的 CRISPR/Cas9 被专门用于编辑/破坏该基因在小鼠和猕猴感光细胞中的早期编码序列,从而敲除 retGC1 的表达,并明显改变视网膜功能和结构。既没有预先存在的 Cas9 特异性 T 细胞反应,也没有诱导 Cas9 特异性 T 细胞反应导致灵长类动物的眼内炎症,也没有限制编辑。结果首次表明,使用 AAV-CRISPR/Cas9 在灵长类动物中进行体细胞基因编辑的能力,并证明了该方法治疗遗传性视网膜疾病,特别是 CORD6 的可行性。

相似文献

1
Somatic Gene Editing of by AAV-CRISPR/Cas9 Alters Retinal Structure and Function in Mouse and Macaque.
Hum Gene Ther. 2019 May;30(5):571-589. doi: 10.1089/hum.2018.193. Epub 2018 Dec 20.
4
Development of an AAV-CRISPR-Cas9-based treatment for dominant cone-rod dystrophy 6.
Mol Ther Methods Clin Dev. 2023 Jun 1;30:48-64. doi: 10.1016/j.omtm.2023.05.020. eCollection 2023 Sep 14.
5
Gene Therapy Fully Restores Vision to the All-Cone Nrl(-/-) Gucy2e(-/-) Mouse Model of Leber Congenital Amaurosis-1.
Hum Gene Ther. 2015 Sep;26(9):575-92. doi: 10.1089/hum.2015.053. Epub 2015 Aug 6.
6
Use of AAV Vectors for CRISPR-Mediated In Vivo Genome Editing in the Retina.
Methods Mol Biol. 2019;1950:123-139. doi: 10.1007/978-1-4939-9139-6_7.
7
mutations in retinal guanylyl cyclase 1 provide biochemical reasons for dominant cone-rod dystrophy but not for stationary night blindness.
J Biol Chem. 2020 Dec 25;295(52):18301-18315. doi: 10.1074/jbc.RA120.015553. Epub 2020 Oct 27.
8
GUCY2D Cone-Rod Dystrophy-6 Is a "Phototransduction Disease" Triggered by Abnormal Calcium Feedback on Retinal Membrane Guanylyl Cyclase 1.
J Neurosci. 2018 Mar 21;38(12):2990-3000. doi: 10.1523/JNEUROSCI.2985-17.2018. Epub 2018 Feb 12.

引用本文的文献

1
Advances in CRISPR/Cas-Based Strategies on Zoonosis.
Transbound Emerg Dis. 2023 Aug 3;2023:9098445. doi: 10.1155/2023/9098445. eCollection 2023.
2
CRISPR/Cas9 gene therapy increases the risk of tumorigenesis in the mouse model of hereditary tyrosinemia type I.
JHEP Rep. 2025 Jan 11;7(4):101327. doi: 10.1016/j.jhepr.2025.101327. eCollection 2025 Apr.
3
CRISPR targeting of mmu-miR-21a through a single adeno-associated virus vector prolongs survival of glioblastoma-bearing mice.
Mol Ther. 2025 Jan 8;33(1):133-151. doi: 10.1016/j.ymthe.2024.11.023. Epub 2024 Nov 19.
4
Gene therapy for inherited retinal diseases: exploiting new tools in genome editing and nanotechnology.
Front Ophthalmol (Lausanne). 2023 Sep 19;3:1270561. doi: 10.3389/fopht.2023.1270561. eCollection 2023.
5
Next generation therapeutics for retinal neurodegenerative diseases.
J Control Release. 2024 Mar;367:708-736. doi: 10.1016/j.jconrel.2024.01.063. Epub 2024 Feb 10.
7
A natural history study of autosomal dominant GUCY2D-associated cone-rod dystrophy.
Doc Ophthalmol. 2023 Dec;147(3):189-201. doi: 10.1007/s10633-023-09954-7. Epub 2023 Sep 29.
8
Development of an AAV-CRISPR-Cas9-based treatment for dominant cone-rod dystrophy 6.
Mol Ther Methods Clin Dev. 2023 Jun 1;30:48-64. doi: 10.1016/j.omtm.2023.05.020. eCollection 2023 Sep 14.
10
An Update on the Application of CRISPR Technology in Clinical Practice.
Mol Biotechnol. 2024 Feb;66(2):179-197. doi: 10.1007/s12033-023-00724-z. Epub 2023 Jun 3.

本文引用的文献

1
Prevalence of Pre-existing Antibodies to CRISPR-Associated Nuclease Cas9 in the USA Population.
Mol Ther Methods Clin Dev. 2018 Jun 15;10:105-112. doi: 10.1016/j.omtm.2018.06.006. eCollection 2018 Sep 21.
3
Amelioration of Alpha-1 Antitrypsin Deficiency Diseases with Genome Editing in Transgenic Mice.
Hum Gene Ther. 2018 Aug;29(8):861-873. doi: 10.1089/hum.2017.227. Epub 2018 Jun 22.
4
UDiTaS™, a genome editing detection method for indels and genome rearrangements.
BMC Genomics. 2018 Mar 21;19(1):212. doi: 10.1186/s12864-018-4561-9.
5
GUCY2D Cone-Rod Dystrophy-6 Is a "Phototransduction Disease" Triggered by Abnormal Calcium Feedback on Retinal Membrane Guanylyl Cyclase 1.
J Neurosci. 2018 Mar 21;38(12):2990-3000. doi: 10.1523/JNEUROSCI.2985-17.2018. Epub 2018 Feb 12.
6
Optimization of Retinal Gene Therapy for X-Linked Retinitis Pigmentosa Due to RPGR Mutations.
Mol Ther. 2017 Aug 2;25(8):1866-1880. doi: 10.1016/j.ymthe.2017.05.004. Epub 2017 May 27.
8
Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice.
Nat Commun. 2017 Mar 14;8:14716. doi: 10.1038/ncomms14716.
9
CRISPR/Cas9-Mediated Genome Editing as a Therapeutic Approach for Leber Congenital Amaurosis 10.
Mol Ther. 2017 Feb 1;25(2):331-341. doi: 10.1016/j.ymthe.2016.12.006. Epub 2017 Jan 18.
10
Novel Methodology for Creating Macaque Retinas with Sortable Photoreceptors and Ganglion Cells.
Front Neurosci. 2016 Dec 1;10:551. doi: 10.3389/fnins.2016.00551. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验