Suppr超能文献

整合数据填补技术:以预测多氯联苯神经毒性毒性当量因子(TEFs)促进危害评估为例的研究

Integrating data gap filling techniques: A case study predicting TEFs for neurotoxicity TEQs to facilitate the hazard assessment of polychlorinated biphenyls.

作者信息

Pradeep Prachi, Carlson Laura M, Judson Richard, Lehmann Geniece M, Patlewicz Grace

机构信息

Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.

National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.

出版信息

Regul Toxicol Pharmacol. 2019 Feb;101:12-23. doi: 10.1016/j.yrtph.2018.10.013. Epub 2018 Oct 22.

Abstract

The application of toxic equivalency factors (TEFs) or toxic units to estimate toxic potencies for mixtures of chemicals which contribute to a biological effect through a common mechanism is one approach for filling data gaps. Toxic Equivalents (TEQ) have been used to express the toxicity of dioxin-like compounds (i.e., dioxins, furans, and dioxin-like polychlorinated biphenyls (PCBs)) in terms of the most toxic form of dioxin: 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). This study sought to integrate two data gap filling techniques, quantitative structure-activity relationships (QSARs) and TEFs, to predict neurotoxicity TEQs for PCBs. Simon et al. (2007) previously derived neurotoxic equivalent (NEQ) values for a dataset of 87 PCB congeners, of which 83 congeners had experimental data. These data were taken from a set of four different studies measuring different effects related to neurotoxicity, each of which tested overlapping subsets of the 83 PCB congeners. The goals of the current study were to: (i) evaluate an alternative neurotoxic equivalent factor (NEF) derivations from an expanded dataset, relative to those derived by Simon et al. and (ii) develop QSAR models to provide NEF estimates for the large number of untested PCB congeners. The models used multiple linear regression, support vector regression, k-nearest neighbor and random forest algorithms within a 5-fold cross validation scheme and position-specific chlorine substitution patterns on the biphenyl scaffold as descriptors. Alternative NEF values were derived but the resulting QSAR models had relatively low predictivity (RMSE ∼0.24). This was mostly driven by the large uncertainties in the underlying data and NEF values. The derived NEFs and the QSAR predicted NEFs to fill data gaps should be applied with caution.

摘要

应用毒性当量因子(TEF)或毒性单位来估计通过共同机制产生生物效应的化学混合物的毒性强度,是填补数据空白的一种方法。毒性当量(TEQ)已被用于以二噁英毒性最强的形式:2,3,7,8-四氯二苯并对二噁英(2,3,7,8-TCDD)来表示类二噁英化合物(即二噁英、呋喃和类二噁英多氯联苯(PCB))的毒性。本研究旨在整合两种数据空白填补技术,即定量构效关系(QSAR)和TEF,以预测多氯联苯的神经毒性TEQ。西蒙等人(2007年)之前为87种多氯联苯同系物的数据集得出了神经毒性当量(NEQ)值,其中83种同系物有实验数据。这些数据来自四项不同的研究,这些研究测量了与神经毒性相关的不同效应,每项研究都测试了83种多氯联苯同系物的重叠子集。本研究的目标是:(i)相对于西蒙等人得出的结果,评估从扩展数据集中得出的替代神经毒性当量因子(NEF);(ii)开发QSAR模型,为大量未测试的多氯联苯同系物提供NEF估计值。这些模型在五折交叉验证方案中使用多元线性回归、支持向量回归、k近邻和随机森林算法,并将联苯支架上的位置特异性氯取代模式作为描述符。得出了替代NEF值,但所得的QSAR模型预测性相对较低(均方根误差约为0.24)。这主要是由基础数据和NEF值中的巨大不确定性驱动的。应谨慎应用得出的NEF和QSAR预测的NEF来填补数据空白。

相似文献

7
Uncertainty analysis of dioxin-like polychlorinated biphenyls-related toxic equivalents in fish.
Environ Toxicol Chem. 2008 Apr;27(4):997-1005. doi: 10.1897/07-460.1.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验