MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China.
ACS Appl Mater Interfaces. 2018 Nov 14;10(45):38906-38914. doi: 10.1021/acsami.8b13542. Epub 2018 Nov 5.
Searching for an economical and efficient water splitting electrocatalyst is still a huge challenge for hydrogen production. This work reports one-step synthesis of hierarchical porous prism arrays (HPPAs) composed of Ni-NiO nanoparticles embedding uniformly in graphite carbon (Ni-NiO/C HPPAs), which is derived from metal-organic framework (CPO-27-Ni) prism arrays grown on nickel foam (NF). Remarkable features of the prism arrays, synergistic effect of Ni-NiO/C, porous graphite carbon, high conductive NF, and good contact between catalyst and current collector result in excellent electrocatalytic performance of Ni-NiO/C HPPAs@NF. Ni-NiO/C HPPAs@NF shows a small overpotential of ∼49.48 mV at the current density of 10 mA cm, low Tafel slope of 74 mV dec and robust stability for hydrogen evolution reaction (HER) in alkaline media. Especially, the overpotential for HER of Ni-NiO/C HPPAs@NF is only ∼132 mV at the current density of 185 mA cm, almost the same as the value from the Pt/C. Furthermore, for oxygen evolution reaction in basic media, Ni-NiO/C HPPAs@NF shows better catalytic activity, lower Tafel slope and higher durability than precious IrO. The above finding offers an effective strategy to design the bifunctional electrocatalysts for overall water splitting.
寻找经济高效的水分解电催化剂对于制氢仍然是一个巨大的挑战。本工作报道了由均匀嵌入石墨碳中的 Ni-NiO 纳米粒子组成的分级多孔棱柱阵列(HPPAs)的一步合成,该棱柱阵列是由生长在镍泡沫(NF)上的金属有机骨架(CPO-27-Ni)棱柱阵列衍生而来。棱柱阵列的显著特点、Ni-NiO/C、多孔石墨碳、高导电性 NF 以及催化剂与集流器之间的良好接触,使得 Ni-NiO/C HPPAs@NF 具有优异的电催化性能。Ni-NiO/C HPPAs@NF 在 10 mA cm 的电流密度下表现出约 49.48 mV 的小过电势、74 mV dec 的低塔菲尔斜率和碱性介质中析氢反应(HER)的良好稳定性。特别是,Ni-NiO/C HPPAs@NF 在 185 mA cm 的电流密度下的 HER 过电势仅约为 132 mV,几乎与 Pt/C 的值相同。此外,对于碱性介质中的析氧反应,Ni-NiO/C HPPAs@NF 表现出比贵金属 IrO 更好的催化活性、更低的塔菲尔斜率和更高的耐久性。上述发现为设计用于全水分解的双功能电催化剂提供了一种有效的策略。