5. Physikalisches Institut, Universität Stuttgart, Center for Integrated Quantum Science and Technology, 70569 Stuttgart, Germany.
Science. 2018 Oct 26;362(6413):446-449. doi: 10.1126/science.aau1949. Epub 2018 Oct 25.
Tailored quantum states of light can be created via a transfer of collective quantum states of matter to light modes. Such collective quantum states emerge in interacting many-body systems if thermal fluctuations are overcome by sufficient interaction strengths. Therefore, ultracold temperatures or strong confinement are typically required. We show that the exaggerated interactions between Rydberg atoms allow for collective quantum states even above room temperature. The emerging Rydberg interactions lead both to suppression of multiple Rydberg state excitations and destructive interference due to polariton dephasing. We experimentally implemented a four-wave mixing scheme to demonstrate an on-demand single-photon source. The combination of glass cell technology, identical atoms, and operation around room temperature promises scalability and integrability. This approach has the potential for various applications in quantum information processing and communication.
通过将物质的集体量子态转移到光模式中,可以产生定制的量子光态。如果热涨落被足够强的相互作用克服,那么在相互作用的多体系统中就会出现这种集体量子态。因此,通常需要超低温或强约束。我们表明,里德伯原子之间的夸张相互作用使得即使在室温以上也可以存在集体量子态。新兴的里德伯相互作用导致了多里德伯态激发的抑制以及由于极化激元退相而产生的相消干涉。我们通过实验实现了四波混频方案,以展示按需单光子源。玻璃池技术、相同原子以及在室温附近的操作的结合,保证了可扩展性和集成性。这种方法在量子信息处理和通信中有许多潜在的应用。