Suppr超能文献

评估肿瘤学中包括患者报告健康结局的预后模型的方法学质量(EPIPHANY):一项系统评价方案

Evaluating methodological quality of Prognostic models Including Patient-reported HeAlth outcomes iN oncologY (EPIPHANY): a systematic review protocol.

作者信息

Deliu Nina, Cottone Francesco, Collins Gary S, Anota Amélie, Efficace Fabio

机构信息

Data Center and Health Outcomes Research Unit, Italian Group for Adult Hematologic Diseases (GIMEMA), Rome, Italy.

Centre for Statistics in Medicine, University of Oxford, Oxford, UK.

出版信息

BMJ Open. 2018 Oct 24;8(10):e025054. doi: 10.1136/bmjopen-2018-025054.

Abstract

INTRODUCTION

While there is mounting evidence of the independent prognostic value of patient-reported outcomes (PROs) for overall survival (OS) in patients with cancer, it is known that the conduct of these studies may hold a number of methodological challenges. The aim of this systematic review is to evaluate the quality of published studies in this research area, in order to identify methodological and statistical issues deserving special attention and to also possibly provide evidence-based recommendations.

METHODS AND ANALYSIS

An electronic search strategy will be performed in PubMed to identify studies developing or validating a prognostic model which includes PROs as predictors. Two reviewers will independently be involved in data collection using a predefined and standardised data extraction form including information related to study characteristics, PROs measures used and multivariable prognostic models. Studies selection will be reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, with data extraction form using fields from the Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS) checklist for multivariable models. Methodological quality assessment will also be performed and will be based on prespecified domains of the CHARMS checklist. As a substantial heterogeneity of included studies is expected, a narrative evidence synthesis will also be provided.

ETHICS AND DISSEMINATION

Given that this systematic review will use only published data, ethical permissions will not be required. Findings from this review will be published in peer-reviewed scientific journals and presented at major international conferences. We anticipate that this review will contribute to identify key areas of improvement for conducting and reporting prognostic factor analyses with PROs in oncology and will lay the groundwork for developing future evidence-based recommendations in this area of research.

PROSPERO REGISTRATION NUMBER

CRD42018099160.

摘要

引言

虽然越来越多的证据表明患者报告结局(PROs)对癌症患者总生存期(OS)具有独立的预后价值,但众所周知,开展这些研究可能会面临一些方法学上的挑战。本系统评价的目的是评估该研究领域已发表研究的质量,以识别值得特别关注的方法学和统计学问题,并可能提供基于证据的建议。

方法与分析

将在PubMed中执行电子检索策略,以识别开发或验证包含PROs作为预测因子的预后模型的研究。两名评审员将使用预定义的标准化数据提取表独立参与数据收集,该表包括与研究特征、所使用的PROs测量方法和多变量预后模型相关的信息。将按照系统评价和Meta分析的首选报告项目指南报告研究选择情况,数据提取表使用预测模型研究系统评价的关键评估和数据提取(CHARMS)清单中的字段用于多变量模型。还将进行方法学质量评估,评估将基于CHARMS清单的预定领域。由于预计纳入研究存在实质性异质性,因此还将提供叙述性证据综合。

伦理与传播

鉴于本系统评价仅使用已发表的数据,因此无需伦理许可。本评价的结果将发表在同行评审的科学期刊上,并在主要国际会议上展示。我们预计,本评价将有助于确定在肿瘤学中使用PROs进行预后因素分析及报告的关键改进领域,并为该研究领域未来制定基于证据的建议奠定基础。

PROSPERO注册号:CRD42018099160。

相似文献

3
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

本文引用的文献

10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验