文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于激光辅助生物打印获取的细胞模式的磁共振成像追踪。

Magnetic Resonance Imaging for tracking cellular patterns obtained by Laser-Assisted Bioprinting.

机构信息

INSERM, Bioingénierie Tissulaire, U1026, F-33076, Bordeaux, France.

CHU de Bordeaux, Services d'Odontologie et de Santé Buccale, F-33076, Bordeaux, France.

出版信息

Sci Rep. 2018 Oct 25;8(1):15777. doi: 10.1038/s41598-018-34226-9.


DOI:10.1038/s41598-018-34226-9
PMID:30361490
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6202323/
Abstract

Recent advances in the field of Tissue Engineering allowed to control the three-dimensional organization of engineered constructs. Cell pattern imaging and in vivo follow-up remain a major hurdle in in situ bioprinting onto deep tissues. Magnetic Resonance Imaging (MRI) associated with Micron-sized superParamagnetic Iron Oxide (MPIO) particles constitutes a non-invasive method for tracking cells in vivo. To date, no studies have utilized Cellular MRI as a tool to follow cell patterns obtained via bioprinting technologies. Laser-Assisted Bioprinting (LAB) has been increasingly recognized as a new and exciting addition to the bioprinting's arsenal, due to its rapidity, precision and ability to print viable cells. This non-contact technology has been successfully used in recent in vivo applications. The aim of this study was to assess the methodology of tracking MPIO-labeled stem cells using MRI after organizing them by Laser-Assisted Bioprinting. Optimal MPIO concentrations for tracking bioprinted cells were determined. Accuracy of printed patterns was compared using MRI and confocal microscopy. Cell densities within the patterns and MRI signals were correlated. MRI enabled to detect cell patterns after in situ bioprinting onto a mouse calvarial defect. Results demonstrate that MRI combined with MPIO cell labeling is a valuable technique to track bioprinted cells in vitro and in animal models.

摘要

组织工程领域的最新进展使得能够控制工程化构建体的三维组织。细胞图案成像和体内后续仍然是原位生物打印到深部组织的主要障碍。磁共振成像 (MRI) 与微米级超顺磁氧化铁 (MPIO) 颗粒结合构成了一种用于体内跟踪细胞的非侵入性方法。迄今为止,尚无研究利用细胞 MRI 作为通过生物打印技术获得的细胞图案的跟踪工具。激光辅助生物打印 (LAB) 由于其快速性、精确性和打印活细胞的能力,已越来越被认为是生物打印领域的一项新的令人兴奋的补充技术。这项非接触技术已成功应用于最近的体内应用。本研究旨在评估通过激光辅助生物打印对细胞进行组织后,使用 MRI 跟踪 MPIO 标记干细胞的方法。确定了用于跟踪生物打印细胞的最佳 MPIO 浓度。使用 MRI 和共聚焦显微镜比较了打印图案的准确性。细胞密度与图案内的 MRI 信号相关。MRI 能够在原位生物打印到小鼠颅骨缺损后检测到细胞图案。结果表明,将 MRI 与 MPIO 细胞标记相结合是一种在体外和动物模型中跟踪生物打印细胞的有价值的技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e47/6202323/270933cc24ac/41598_2018_34226_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e47/6202323/19962836db21/41598_2018_34226_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e47/6202323/9545c687bf39/41598_2018_34226_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e47/6202323/66914183e12d/41598_2018_34226_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e47/6202323/f67b4ac9f558/41598_2018_34226_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e47/6202323/23d0d716ebca/41598_2018_34226_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e47/6202323/270933cc24ac/41598_2018_34226_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e47/6202323/19962836db21/41598_2018_34226_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e47/6202323/9545c687bf39/41598_2018_34226_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e47/6202323/66914183e12d/41598_2018_34226_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e47/6202323/f67b4ac9f558/41598_2018_34226_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e47/6202323/23d0d716ebca/41598_2018_34226_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e47/6202323/270933cc24ac/41598_2018_34226_Fig6_HTML.jpg

相似文献

[1]
Magnetic Resonance Imaging for tracking cellular patterns obtained by Laser-Assisted Bioprinting.

Sci Rep. 2018-10-25

[2]
Specific chemotaxis of magnetically labeled mesenchymal stem cells: implications for MRI of glioma.

Mol Imaging Biol. 2012-12

[3]
In situ prevascularization designed by laser-assisted bioprinting: effect on bone regeneration.

Biofabrication. 2019-7-3

[4]
In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications.

Sci Rep. 2017-5-11

[5]
Labeling stem cells with superparamagnetic iron oxide nanoparticles: analysis of the labeling efficacy by microscopy and magnetic resonance imaging.

Methods Mol Biol. 2012

[6]
Effectiveness of micron-sized superparamagnetic iron oxide particles as markers for detection of migration of bone marrow-derived mesenchymal stromal cells in a stroke model.

J Magn Reson Imaging. 2013-6

[7]
Intracellular labeling of mouse embryonic stem cell-derived neural progenitor aggregates with micron-sized particles of iron oxide.

Cytotherapy. 2015-1

[8]
Whole body MRI and fluorescent microscopy for detection of stem cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles and DiI following intramuscular and systemic delivery.

Methods Mol Biol. 2013

[9]
Cryopreservation of embryonic stem cell-derived multicellular neural aggregates labeled with micron-sized particles of iron oxide for magnetic resonance imaging.

Biotechnol Prog. 2015

[10]
Micropatterning of endothelial cells to create a capillary-like network with defined architecture by laser-assisted bioprinting.

J Mater Sci Mater Med. 2019-2-12

引用本文的文献

[1]
Recent Advances in Scaffolds for Guided Bone Regeneration.

Biomimetics (Basel). 2024-3-1

[2]
Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications.

Adv Drug Deliv Rev. 2024-5

[3]
Current Advances of Three-Dimensional Bioprinting Application in Dentistry: A Scoping Review.

Materials (Basel). 2022-9-15

[4]
Additive Manufactured Polymers in Dentistry, Current State-of-the-Art and Future Perspectives-A Review.

Polymers (Basel). 2022-9-3

[5]
Theranostic biomaterials for tissue engineering.

Curr Opin Biomed Eng. 2021-9

[6]
Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering.

Nanomaterials (Basel). 2021-9-8

[7]
Progress of 3D Printing Techniques for Nasal Cartilage Regeneration.

Aesthetic Plast Surg. 2022-4

[8]
In Vivo Tracking of Tissue Engineered Constructs.

Micromachines (Basel). 2019-7-16

本文引用的文献

[1]
Therapeutic potential of dental stem cells.

J Tissue Eng. 2017-5-23

[2]
In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications.

Sci Rep. 2017-5-11

[3]
Patterning of Endothelial Cells and Mesenchymal Stem Cells by Laser-Assisted Bioprinting to Study Cell Migration.

Biomed Res Int. 2016

[4]
Dynamic Tracking of Injected Mesenchymal Stem Cells after Myocardial Infarction in Rats: A Serial 7T MRI Study.

Stem Cells Int. 2016

[5]
Laser Direct-Write Onto Live Tissues: A Novel Model for Studying Cancer Cell Migration.

J Cell Physiol. 2016-11

[6]
A Review of Three-Dimensional Printing in Tissue Engineering.

Tissue Eng Part B Rev. 2016-8

[7]
Printing cancer cells into intact microvascular networks: a model for investigating cancer cell dynamics during angiogenesis.

Integr Biol (Camb). 2015-9

[8]
From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells.

Stem Cells Cloning. 2014-12-4

[9]
Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI.

Magn Reson Med. 2014-12

[10]
In vivo MR detection of fluorine-labeled human MSC using the bSSFP sequence.

Int J Nanomedicine. 2014-4-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索