Huang Tao, Rountree Eric S, Traywick Andrew P, Bayoumi Magd, Dempsey Jillian L
Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-3290 , United States.
J Am Chem Soc. 2018 Nov 7;140(44):14655-14669. doi: 10.1021/jacs.8b07102. Epub 2018 Oct 26.
Catalytic processes to generate (or oxidize) fuels such as hydrogen are underpinned by multiple proton-coupled electron transfer (PCET) steps that are associated with the formation or activation of metal-hydride bonds. Fully understanding the detailed PCET mechanisms of metal hydride transformations holds promise for the rational design of energy-efficient catalysis. Here we investigate the detailed PCET mechanisms for the activation of the transition metal hydride complex CpW(CO)(PMe)H (Cp = cyclopentadienyl) using stopped-flow rapid mixing coupled with time-resolved optical spectroscopy. We reveal that all three limiting PCET pathways can be accessed by changing the free energy for elementary proton, electron, and proton-electron transfers through the choice of base and oxidant, with the concerted pathway occurring exclusively as a secondary parallel route. Through detailed kinetics analysis, we define free energy relationships for the kinetics of elementary reaction steps, which provide insight into the factors influencing reaction mechanism. Rate constants for proton transfer processes in the limiting stepwise pathways reveal a large reorganization energy associated with protonation/deprotonation of the metal center (λ = 1.59 eV) and suggest that sluggish proton transfer kinetics hinder access to a concerted route. Rate constants for concerted PCET indicate that the concerted routes are asynchronous. Additionally, through quantification of the relative contributions of parallel stepwise and concerted mechanisms toward net product formation, the influence of various reaction parameters on reactivity are identified. This work underscores the importance of understanding the PCET mechanism for controlling metal hydride reactivity, which could lead to superior catalyst design for fuel production and oxidation.
诸如氢气等燃料的催化生成(或氧化)过程是由多个质子耦合电子转移(PCET)步骤支撑的,这些步骤与金属 - 氢化物键的形成或活化相关。全面了解金属氢化物转化的详细PCET机制有望实现对节能催化的合理设计。在此,我们使用停流快速混合结合时间分辨光谱研究了过渡金属氢化物配合物CpW(CO)(PMe)H(Cp = 环戊二烯基)活化的详细PCET机制。我们发现,通过选择碱和氧化剂来改变基本质子、电子和质子 - 电子转移的自由能,可以实现所有三种极限PCET途径,其中协同途径仅作为次要的平行途径出现。通过详细的动力学分析,我们定义了基本反应步骤动力学的自由能关系,这为影响反应机制的因素提供了深入了解。极限分步途径中质子转移过程的速率常数揭示了与金属中心质子化/去质子化相关的大重组能(λ = 1.59 eV),并表明缓慢的质子转移动力学阻碍了协同途径的实现。协同PCET的速率常数表明协同途径是异步的。此外,通过量化平行分步和协同机制对净产物形成的相对贡献,确定了各种反应参数对反应活性的影响。这项工作强调了理解PCET机制对控制金属氢化物反应活性的重要性,这可能会带来用于燃料生产和氧化的卓越催化剂设计。