Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.
Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States.
Chem Rev. 2022 Jan 12;122(1):1-49. doi: 10.1021/acs.chemrev.1c00521. Epub 2021 Dec 20.
We present an update and revision to our 2010 review on the topic of proton-coupled electron transfer (PCET) reagent thermochemistry. Over the past decade, the data and thermochemical formalisms presented in that review have been of value to multiple fields. Concurrently, there have been advances in the thermochemical cycles and experimental methods used to measure these values. This Review (i) summarizes those advancements, (ii) corrects systematic errors in our prior review that shifted many of the absolute values in the tabulated data, (iii) provides updated tables of thermochemical values, and (iv) discusses new conclusions and opportunities from the assembled data and associated techniques. We advocate for updated thermochemical cycles that provide greater clarity and reduce experimental barriers to the calculation and measurement of Gibbs free energies for the conversion of X to XH in PCET reactions. In particular, we demonstrate the utility and generality of reporting potentials of hydrogenation, °(V vs H), in almost any solvent and how these values are connected to more widely reported bond dissociation free energies (BDFEs). The tabulated data demonstrate that °(V vs H) and BDFEs are generally insensitive to the nature of the solvent and, in some cases, even to the phase (gas versus solution). This Review also presents introductions to several emerging fields in PCET thermochemistry to give readers windows into the diversity of research being performed. Some of the next frontiers in this rapidly growing field are coordination-induced bond weakening, PCET in novel solvent environments, and reactions at material interfaces.
我们对 2010 年关于质子耦合电子转移(PCET)试剂热化学的综述进行了更新和修订。在过去的十年中,该综述中呈现的数据和热化学形式对于多个领域都具有重要价值。同时,用于测量这些值的热化学循环和实验方法也取得了进展。本综述(i)总结了这些进展,(ii)纠正了我们之前综述中的系统误差,这些误差改变了表中数据的许多绝对值,(iii)提供了更新的热化学值表,(iv)讨论了从组装的数据和相关技术中得出的新结论和机会。我们提倡使用更新的热化学循环,这些循环提供了更大的清晰度,并降低了计算和测量 PCET 反应中 X 到 XH 转化的吉布斯自由能的实验障碍。特别是,我们展示了报告氢化电势,°(V 与 H 相比),在几乎任何溶剂中的实用性和通用性,以及这些值如何与更广泛报道的键离解自由能(BDFEs)相关联。表中的数据表明,°(V 与 H 相比)和 BDFEs 通常不受溶剂性质的影响,在某些情况下,甚至不受相(气体与溶液)的影响。本综述还介绍了 PCET 热化学中几个新兴领域,使读者能够了解正在进行的多样性研究。这个快速发展的领域的下一个前沿领域包括配位诱导键弱化、新型溶剂环境中的 PCET 以及材料界面反应。