Suppr超能文献

探索具有自适应孔径的临床质子束用于临床前研究的可行性。

Exploring the feasibility of a clinical proton beam with an adaptive aperture for pre-clinical research.

作者信息

Almeida Isabel P, Vaniqui Ana, Schyns Lotte Ejr, van der Heyden Brent, Cooley James, Zwart Townsend, Langenegger Armin, Verhaegen Frank

机构信息

1 Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastrich , Netherlands.

2 Mevion Medical Systems Inc , Littleton, MA , USA.

出版信息

Br J Radiol. 2019 Mar;92(1095):20180446. doi: 10.1259/bjr.20180446. Epub 2018 Nov 7.

Abstract

OBJECTIVE

: To investigate whether the Mevion S250i with HYPERSCAN clinical proton system could be used for pre-clinical research with millimetric beams.

METHODS

: The nozzle of the proton beam line, consisting of an energy modulation system (EMS) and an adaptive aperture (AA), was modelled with the TOPAS Monte Carlo Simulation Toolkit. With the EMS, the 230 MeV beam nominal range can be decreased in multiples of 2.1 mm. Monte Carlo dose calculations were performed in a mouse lung tumour CT image. The AA allows fields as small as 5 × 1 mm to be used for irradiation. The best plans to give 2 Gy to the tumour were derived from a set of discrete energies allowed by the EMS, different field sizes and beam directions. The final proton plans were compared to a precision photon irradiation plan. Treatment times were also assessed.

RESULTS

: Seven different proton beam plans were investigated, with a good coverage to the tumour (D95 > 1.95 Gy, D5 < 2.3 Gy) and with potentially less damage to the organs at risk than the photon plan. For very small fields and low energies, the number of protons arriving to the target drops to 1-3%, nevertheless the treatment times would be below 5 s.

CONCLUSION

: The proton plans made in this study, collimated by an AA, could be used for animal irradiation.

ADVANCES IN KNOWLEDGE

: This is one of the first study to demonstrate the feasibility of pre-clinical research with a clinical proton beam with an adaptive aperture used to create small fields.

摘要

目的

研究配备HYPERSCAN临床质子系统的Mevion S250i是否可用于毫米级束流的临床前研究。

方法

使用TOPAS蒙特卡罗模拟工具包对由能量调制系统(EMS)和自适应孔径(AA)组成的质子束线喷嘴进行建模。借助EMS,230 MeV束流的标称射程可按2.1 mm的倍数减小。在小鼠肺部肿瘤CT图像中进行蒙特卡罗剂量计算。AA允许使用小至5×1 mm的射野进行照射。从EMS允许的一组离散能量、不同射野大小和束流方向中得出给予肿瘤2 Gy的最佳计划。将最终的质子计划与精确光子照射计划进行比较。还评估了治疗时间。

结果

研究了七种不同的质子束计划,对肿瘤有良好的覆盖(D95>1.95 Gy,D5<2.3 Gy),并且与光子计划相比,对危及器官的潜在损伤可能更小。对于非常小的射野和低能量,到达靶区的质子数降至1 - 3%,不过治疗时间将低于5秒。

结论

本研究中由AA准直的质子计划可用于动物照射。

知识进展

这是首批证明使用配备自适应孔径以产生小射野的临床质子束进行临床前研究可行性的研究之一。

相似文献

1
Exploring the feasibility of a clinical proton beam with an adaptive aperture for pre-clinical research.
Br J Radiol. 2019 Mar;92(1095):20180446. doi: 10.1259/bjr.20180446. Epub 2018 Nov 7.
4
Dosimetric evaluation of dose shaping by adaptive aperture and its impact on plan quality.
Med Dosim. 2024;49(1):30-36. doi: 10.1016/j.meddos.2023.10.011. Epub 2023 Dec 11.
5
Dose painting by dynamic irradiation delivery on an image-guided small animal radiotherapy platform.
Br J Radiol. 2019 Mar;92(1095):20180744. doi: 10.1259/bjr.20180744. Epub 2019 Feb 12.
7
Dosimetric feasibility of real-time MRI-guided proton therapy.
Med Phys. 2014 Nov;41(11):111713. doi: 10.1118/1.4897570.
9
Measurements of fetal dose with Mevion S250i proton therapy system with HYPERSCAN.
J Appl Clin Med Phys. 2023 May;24(5):e13957. doi: 10.1002/acm2.13957. Epub 2023 Apr 12.
10
Impact of Real-Time Image Gating on Spot Scanning Proton Therapy for Lung Tumors: A Simulation Study.
Int J Radiat Oncol Biol Phys. 2017 Jan 1;97(1):173-181. doi: 10.1016/j.ijrobp.2016.09.027. Epub 2016 Sep 28.

引用本文的文献

2
Virtual monoenergetic micro-CT imaging in mice with artificial intelligence.
Sci Rep. 2022 Feb 11;12(1):2324. doi: 10.1038/s41598-022-06172-0.
3
Deep Learning Based Automated Orthotopic Lung Tumor Segmentation in Whole-Body Mouse CT-Scans.
Cancers (Basel). 2021 Sep 13;13(18):4585. doi: 10.3390/cancers13184585.
4
Innovations and the Use of Collimators in the Delivery of Pencil Beam Scanning Proton Therapy.
Int J Part Ther. 2021 Jun 25;8(1):73-83. doi: 10.14338/IJPT-20-00039.1. eCollection 2021 Summer.
5

本文引用的文献

1
On the determination of planning target margins due to motion for mice lung tumours using a four-dimensional MOBY phantom.
Br J Radiol. 2019 Mar;92(1095):20180445. doi: 10.1259/bjr.20180445. Epub 2018 Jul 20.
2
ESTRO ACROP: Technology for precision small animal radiotherapy research: Optimal use and challenges.
Radiother Oncol. 2018 Mar;126(3):471-478. doi: 10.1016/j.radonc.2017.11.016. Epub 2017 Dec 18.
3
Biological and dosimetric characterisation of spatially fractionated proton minibeams.
Phys Med Biol. 2017 Nov 21;62(24):9260-9281. doi: 10.1088/1361-6560/aa950c.
4
An image-guided precision proton radiation platform for preclinical in vivo research.
Phys Med Biol. 2017 Jan 7;62(1):43-58. doi: 10.1088/1361-6560/62/1/43. Epub 2016 Dec 14.
5
Tumour and normal tissue radiobiology in mouse models: how close are mice to mini-humans?
Br J Radiol. 2017 Jan;90(1069):20160441. doi: 10.1259/bjr.20160441. Epub 2016 Sep 26.
6
A framework for inverse planning of beam-on times for 3D small animal radiotherapy using interactive multi-objective optimisation.
Phys Med Biol. 2015 Jul 21;60(14):5681-98. doi: 10.1088/0031-9155/60/14/5681. Epub 2015 Jul 6.
8
A review of treatment planning for precision image-guided photon beam pre-clinical animal radiation studies.
Z Med Phys. 2014 Dec;24(4):323-34. doi: 10.1016/j.zemedi.2014.02.004. Epub 2014 Mar 12.
9
Development and validation of a treatment planning system for small animal radiotherapy: SmART-Plan.
Radiother Oncol. 2013 Dec;109(3):361-6. doi: 10.1016/j.radonc.2013.10.003. Epub 2013 Oct 31.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验