Suppr超能文献

紧凑型质子治疗机上用于质子立体定向放射治疗(SFRT)的格栅准直器的设计、制造、调试和剂量验证。

Design, fabrication, commissioning, and dosimetric verification of a GRID collimator for proton SFRT on a compact proton therapy machine.

作者信息

Setianegara Jufri, Green Winter, Zhao Xiandong, Mazur Thomas R, Darafsheh Arash, Apicelli Anthony J, Badiyan Shahed N, Perkins Stephanie M, Zhao Tianyu, Prusator Michael T

机构信息

Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA.

出版信息

Med Phys. 2025 Jul;52(7):e17939. doi: 10.1002/mp.17939.

Abstract

BACKGROUND

Proton GRID radiotherapy (RT) is an extension of photon spatially fractionated radiation therapy (SFRT) techniques for bulky invasive tumors. It has been hypothesized that GRID RT improves the therapeutic ratio by minimizing normal tissue toxicities associated with treating bulky volumes while inducing abscopal radiobiologic effects. However, compact, synchrocyclotron-based proton therapy machines with large spot sizes pose unique technical challenges in implementing proton GRID RT.

PURPOSE

The purpose of this work is to (a) design and model a collimating brass aperture within the RayStation treatment planning system (TPS), (b) validate the designed aperture by creating a commissioning plan and measuring the absolute and relative proton dose distributions delivered, and (c) perform a robustness analysis to determine the allowable mechanical tolerances and uncertainties during treatment delivery.

METHODS

A custom (27 × 21.5 × 5 cm) brass collimator (.decimal) was designed and fabricated with divergently-matched circular holes of 15-mm-diameter arranged in a hexagonal pattern. In-house RayStation scripts were developed to import the computer-aided design (CAD) model of the collimator into the TPS, and accurately orient and position the collimator as "support structures" for each beam angle requiring the collimator on a given plan. Divergently-matched cylindrical optimization structures were then created with 5, 10 and 15 mm diameters. Commissioning plans were created to deliver uniform proton physical doses (50 cGy and 8 Gy) through each aperture to 5-15 cm depth within a water phantom. One dimensional (1D) and 2D proton dose measurements were performed with various available radiation detectors, including: (a) PPC05 parallel-plate ion chamber, (b) MatriXX ion chamber array, (c) Lynx scintillation detector, and (d) Gafchromic EBT3 radiochromic films. Gamma analyses at 3%/3 mm criteria were performed for the 2D dose measurements acquired with the MatriXX and Lynx detectors. Finally, mounting errors were simulated within the TPS by artificially displacing the brass aperture along the crossline, inline and snout extension directions to determine the minimum allowable mechanical deviations between the TPS and the actual mounted aperture position.

RESULTS

Experimental measurements showed the best dosimetric agreements with the TPS calculations for optimization cylinder diameters of 10 mm with gamma passing rates of at least 97.9%. 1D absolute proton dose measurements with an ionization chamber showed agreement within 2.11% of TPS calculations once correcting for partial-volume averaging. Simulated mounting or setup errors within the TPS indicated a lateral positional requirement of ± 1.5 mm and a longitudinal snout positional requirement of ± 3 cm to achieve gamma passing rates of at least 90% (institutional standards).

CONCLUSION

We have commissioned a brass collimator consisting of milled divergent apertures for clinical SFRT treatments via a proton GRID technique. This process included an assessment of dosimetric sensitivity of aperture positioning error, and also dosimetric evaluation of the aperture model as a brass support structure within the TPS. Future works entail the creation of clinical SFRT plans using different planning techniques and their respective dose comparisons.

摘要

背景

质子格栅放射治疗(RT)是光子空间分割放射治疗(SFRT)技术在治疗体积较大的浸润性肿瘤方面的扩展。据推测,格栅RT通过将与治疗大体积肿瘤相关的正常组织毒性降至最低,同时诱导远隔放射生物学效应,提高了治疗比。然而,基于同步回旋加速器的紧凑型质子治疗机,其光斑尺寸较大,在实施质子格栅RT时带来了独特的技术挑战。

目的

本研究的目的是:(a)在RayStation治疗计划系统(TPS)中设计并模拟一个准直黄铜孔径;(b)通过创建调试计划并测量所输送的绝对和相对质子剂量分布来验证设计的孔径;(c)进行稳健性分析,以确定治疗输送过程中允许的机械公差和不确定性。

方法

设计并制造了一个定制的(27×21.5×5 cm)黄铜准直器(十进制),其具有以六边形图案排列的直径为15 mm的发散匹配圆孔。开发了内部RayStation脚本,将准直器的计算机辅助设计(CAD)模型导入TPS,并将准直器作为给定计划中每个需要准直器的射束角度的“支撑结构”进行精确的定向和定位。然后创建直径为5、10和15 mm的发散匹配圆柱形优化结构。创建调试计划,通过每个孔径向水模体中5 - 15 cm深度输送均匀的质子物理剂量(50 cGy和8 Gy)。使用各种可用的辐射探测器进行一维(1D)和二维质子剂量测量,包括:(a)PPC05平行板电离室;(b)MatriXX电离室阵列;(c)Lynx闪烁探测器;(d)Gafchromic EBT3放射变色胶片。对使用MatriXX和Lynx探测器获得的二维剂量测量进行3%/3 mm标准的伽马分析。最后,通过在TPS内沿交叉线、直线和机头延伸方向人为移动黄铜孔径来模拟安装误差,以确定TPS与实际安装孔径位置之间的最小允许机械偏差。

结果

实验测量表明,对于优化圆柱直径为10 mm的情况,与TPS计算的剂量学一致性最佳,伽马通过率至少为97.9%。使用电离室进行的一维绝对质子剂量测量,在校正部分体积平均后,与TPS计算结果的一致性在2.11%以内。TPS内模拟的安装或设置误差表明,横向位置要求为±1.5 mm,纵向机头位置要求为±3 cm,以实现至少90%的伽马通过率(机构标准)。

结论

我们已通过质子格栅技术调试了一个由铣削发散孔径组成的黄铜准直器,用于临床SFRT治疗。该过程包括评估孔径定位误差的剂量学敏感性,以及将孔径模型作为TPS内的黄铜支撑结构进行剂量学评估。未来的工作需要使用不同的计划技术创建临床SFRT计划,并进行各自的剂量比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验